Central extensions of restricted Lie superalgebras and classification of p-nilpotent Lie superalgebras in dimension 4

Quentin Ehret

GTP Seminar, January 2024

Joint work with Sofiane Bouarroudj

جامعـة نيويـورلك أبـوظـبي
© NYU ABU DHABI

Outline

Let \mathbb{K} be a field of characteristic $p>2$, algebraically closed.

- Our goals:
- classification of low-dimensional p-nilpotent restricted Lie superalgebras over \mathbb{K}.
- superization of formulas for the restricted cohomology.

Outline

Let \mathbb{K} be a field of characteristic $p>2$, algebraically closed.

- Our goals:
- classification of low-dimensional p-nilpotent restricted Lie superalgebras over \mathbb{K}.
- superization of formulas for the restricted cohomology.
- Our tool: restricted central extensions:

Outline

Let \mathbb{K} be a field of characteristic $p>2$, algebraically closed.

- Our goals:
- classification of low-dimensional p-nilpotent restricted Lie superalgebras over \mathbb{K}.
- superization of formulas for the restricted cohomology.
- Our tool: restricted central extensions:

Proposition

Let L be a p-nilpotent restricted Lie superalgebra of dimension n. Then, L is isomorphic to a central extension by a restricted 2-cocycle of a p-nilpotent restricted Lie superalgebra of dimension $n-1$.

Outline

Let \mathbb{K} be a field of characteristic $p>2$, algebraically closed.

- Our goals:
- classification of low-dimensional p-nilpotent restricted Lie superalgebras over \mathbb{K}.
- superization of formulas for the restricted cohomology.
- Our tool: restricted central extensions:

Proposition

Let L be a p-nilpotent restricted Lie superalgebra of dimension n. Then, L is isomorphic to a central extension by a restricted 2-cocycle of a p-nilpotent restricted Lie superalgebra of dimension $n-1$.

- What do we need? Restricted 2-cocycles of the restricted cohomology for restricted Lie superalgebras.
(1) Introduction
(2) Preliminaries
(3) Restricted cohomology and central extensions
- A (very) brief history of restricted cohomology
- Restricted cohomology for restricted Lie superalgebras
- Central extensions of restricted Lie superalgebras

4 Classification of low dimensional restricted Lie superalgebras

- A brief history of classification of restricted Lie algebras
- Dimension 3
- Dimension 4: scalar restricted 2-cocycles
- Dimension 4: the classification

Restricted Lie algebras

Let \mathbb{K} a field of characteristic $p>2$ and A an associative \mathbb{K}-algebra. With the commutator, it's a Lie algebra. The adjoint representation is then given by

$$
\operatorname{ad}_{x}(y)=x y-y x .
$$

Restricted Lie algebras

Let \mathbb{K} a field of characteristic $p>2$ and A an associative \mathbb{K}-algebra. With the commutator, it's a Lie algebra. The adjoint representation is then given by

$$
\operatorname{ad}_{x}(y)=x y-y x
$$

Let $m>0$. Then

$$
\operatorname{ad}_{x}^{m}(y)=\sum_{j=0}^{m}\binom{m}{j}(-1)^{m-j} x^{j} y x^{m-j}
$$

Restricted Lie algebras

Let \mathbb{K} a field of characteristic $p>2$ and A an associative \mathbb{K}-algebra. With the commutator, it's a Lie algebra. The adjoint representation is then given by

$$
\operatorname{ad}_{x}(y)=x y-y x
$$

Let $m>0$. Then

$$
\operatorname{ad}_{x}^{m}(y)=\sum_{j=0}^{m}\binom{m}{j}(-1)^{m-j} x^{j} y x^{m-j}
$$

Then, if $m=p$, we obtain

$$
\operatorname{ad}_{x}^{p}(y)=x^{p} y-y x^{p}=\operatorname{ad}_{x^{p}}(y) .
$$

Restricted Lie algebras

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map $(\cdot)^{[p]}: L \longrightarrow L$ satisfying for all $x, y \in L$ and for all $\lambda \in \mathbb{K}$:
(1) $(\lambda x)^{[p]}=\lambda^{p} x^{[p]}$;

Restricted Lie algebras

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map $(\cdot)^{[p]}: L \longrightarrow L$ satisfying for all $x, y \in L$ and for all $\lambda \in \mathbb{K}$:
(1) $(\lambda x)^{[p]}=\lambda^{p} x^{[p]}$;
(2) $\left[x, y^{[p]}\right]=[[\cdots[x, \overbrace{y], y], \cdots, y}^{p \text { terms }}]$;

Restricted Lie algebras

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map $(\cdot)^{[p]}: L \longrightarrow L$ satisfying for all $x, y \in L$ and for all $\lambda \in \mathbb{K}$:
(1) $(\lambda x)^{[p]}=\lambda^{p} x^{[p]}$;
(2) $\left[x, y^{[p]}\right]=[[\cdots[x, y], y], \cdots, y]$;
(3) $(x+y)^{[p]}=x^{[p]}+y^{[p]}+\sum_{i=1}^{p-1} s_{i}(x, y)$,

Nathan Jacobson (1910-1999) with is (x, y) the coefficient of Z^{i-1} in $\operatorname{ad}_{Z x+y}^{p-1}(x)$. Such a map $(-)^{[p]}: L \longrightarrow L$ is called p-map.

Restricted Lie algebras

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map $(\cdot)^{[p]}: L \longrightarrow L$ satisfying for all $x, y \in L$ and for all $\lambda \in \mathbb{K}$:
(1) $(\lambda x)^{[p]}=\lambda^{p} x^{[p]}$;
(2) $\left[x, y^{[p]}\right]=[[\cdots[x, y], y], \cdots, y]$;
(3) $(x+y)^{[p]}=x^{[p]}+y^{[p]}+\sum_{i=1}^{p-1} s_{i}(x, y)$,

Nathan Jacobson (1910-1999)
with is (x, y) the coefficient of Z^{i-1} in $\operatorname{ad}_{Z x+y}^{p-1}(x)$. Such a map $(-)^{[p]}: L \longrightarrow L$ is called p-map.

Example: any associative algebra A with $[a, b]=a b-b a$ and $a^{[p]}=a^{p}, \forall a, b \in A$.

Restricted Lie algebras

Very useful :

$$
\sum_{i=1}^{p-1} s_{i}(x, y)=\sum_{\substack{x_{i}=x \text { or } y=\\ x_{p}=x, x_{p-1}=y}} \frac{1}{\sharp\{x\}}\left[x_{1},\left[x_{2},\left[\ldots,\left[x_{p-1}, x_{p}\right] \ldots\right],\right.\right.
$$

Restricted Lie algebras

Very useful :

$$
\sum_{i=1}^{p-1} s_{i}(x, y)=\sum_{\substack{x_{i}=x \text { or } y \\ x_{\rho}=x, x_{p-1}=y}} \frac{1}{\sharp\{x\}}\left[x_{1},\left[x_{2},\left[\ldots,\left[x_{p-1}, x_{p}\right] \ldots\right],\right.\right.
$$

Definition

A Lie algebra morphism $f:\left(L,[\cdot, \cdot],(\cdot)^{[p]}\right) \rightarrow\left(L^{\prime},[\cdot, \cdot]^{\prime},(\cdot)^{[p]^{\prime}}\right)$ is called restricted if

$$
f\left(x^{[p]}\right)=f(x)^{[p]^{\prime}}, \forall x \in L .
$$

A L-module M is called restricted if

$$
x^{[p]} \cdot m=(\overbrace{x \cdot(x \cdots(x}^{p \text { terms }} \cdot m) \cdots)), \forall x \in L, \forall m \in M .
$$

Lie superalgebras

Definition

A Lie superalgebra $L=L_{\overline{0}} \oplus L_{\overline{1}}$ is a $\mathbb{Z} / 2 \mathbb{Z}$-graded vector space equipped with a bilinear map $[\cdot, \cdot]: L \times L \rightarrow L$ satisfying for $x, y, z \in L$:
(1) $|[x, y]|=|x|+|y|$;
(c) $[x, y]=-(-1)^{|x||y|}[y, x]$;
(3) $(-1)^{|x||z|}[x,[y, z]]+(-1)^{|x||y|}[y,[z, x]]+(-1)^{|y||z|}[z,[x, y]]=0$.

If $p=3$, the identity $[x,[x, x]]=0, x \in L_{\overline{1}}$ has to be added as an axiom as well.

Lie superalgebras

Definition

A Lie superalgebra $L=L_{\overline{0}} \oplus L_{\overline{1}}$ is a $\mathbb{Z} / 2 \mathbb{Z}$-graded vector space equipped with a bilinear map $[\cdot, \cdot]: L \times L \rightarrow L$ satisfying for $x, y, z \in L$:
(1) $|[x, y]|=|x|+|y|$;
(2) $[x, y]=-(-1)^{|x||y|}[y, x]$;
(3) $(-1)^{|x||z|}[x,[y, z]]+(-1)^{|x||y|}[y,[z, x]]+(-1)^{|y||z|}[z,[x, y]]=0$.

If $p=3$, the identity $[x,[x, x]]=0, x \in L_{\overline{1}}$ has to be added as an axiom as well.
Let $f: V \rightarrow W$ be a map between $\mathbb{Z} / 2 \mathbb{Z}$-graded vector spaces. Then:

- the map f is called even if $f\left(V_{\bar{i}}\right) \subset W_{\bar{i}}$;
- the map f is called odd if $f\left(V_{\bar{i}}\right) \subset W_{\overline{i+1}}$;

Restricted Lie superalgebras

Definition (Restricted Lie superalgebra)

A restricted Lie superalgebra is a Lie superalgebra $L=L_{\overline{0}} \oplus L_{\overline{1}}$ such that
(1) The even part $L_{\overline{0}}$ is a restricted Lie algebra;
(2) The odd part $L_{\overline{1}}$ is a Lie $L_{\overline{0}}$-module;

- $\left[x, y^{[p]}\right]=[[\ldots[x, \overbrace{y], y], \ldots, y}^{p \text { terms }}], \forall x \in L_{\overline{1}}, y \in L_{\overline{0}}$.

Restricted Lie superalgebras

Definition (Restricted Lie superalgebra)

A restricted Lie superalgebra is a Lie superalgebra $L=L_{\overline{0}} \oplus L_{\overline{1}}$ such that
(1) The even part $L_{\overline{0}}$ is a restricted Lie algebra;
(2) The odd part $L_{\overline{1}}$ is a Lie $L_{\overline{0}}$-module;

- $\left[x, y^{[p]}\right]=[[\ldots[x, \overbrace{y], y], \ldots, y}^{p \text { terms }}], \forall x \in L_{\overline{1}}, y \in L_{\overline{0}}$.

We can define a map $(\cdot)^{[2 p]}: L_{\overline{1}} \rightarrow L_{\overline{0}}$ by

$$
x^{[2 p]}=\left(x^{2}\right)^{[p]}, \text { with } x^{2}=\frac{1}{2}[x, x], x \in L_{\overline{1}} .
$$

Restricted Lie superalgebras

Definition (Restricted Lie superalgebra)

A restricted Lie superalgebra is a Lie superalgebra $L=L_{\overline{0}} \oplus L_{\overline{1}}$ such that
(1) The even part $L_{\overline{0}}$ is a restricted Lie algebra;
(2) The odd part $L_{\overline{1}}$ is a Lie $L_{\overline{0}}$-module;

- $\left[x, y^{[p]}\right]=[[\ldots[x, \overbrace{y], y], \ldots, y}^{p \text { terms }}], \forall x \in L_{\overline{1}}, y \in L_{\overline{0}}$.

We can define a map $(\cdot)^{[2 p]}: L_{\overline{1}} \rightarrow L_{\overline{0}}$ by

$$
x^{[2 p]}=\left(x^{2}\right)^{[p]}, \text { with } x^{2}=\frac{1}{2}[x, x], x \in L_{\overline{1}} .
$$

Theorem (Jacobson)

Let $\left(e_{j}\right)_{j \in J}$ be a basis of $L_{\overline{0}}$, and let the elements $f_{j} \in L_{\overline{0}}$ be such that $\left(\operatorname{ad}_{e_{j}}\right)^{p}=\operatorname{ad}_{f_{j}}$. Then, there exists exactly one $p \mid 2 p$-mapping $(\cdot)^{[p \mid 2 p]}: L \rightarrow L$ such that

$$
e_{j}^{[p]}=f_{j} \quad \text { for all } j \in J
$$

Restricted p-nilpotent Lie superalgebras

Let L be a Lie superalgebra. We define a descending central sequence by

$$
C^{0}(L)=L, \quad \text { and } C^{k+1}(L)=\left[C^{k}(L), L\right] .
$$

The Lie superalgebra L is called nilpotent if there exists $k \geq 0$ such that $C^{k}(L)=0$.

Suppose that L is restricted. Then L is called p-nilpotent if there exists $n \geq 0$ such that $x^{[p]^{n}}=0 \forall x \in L_{\overline{0}}$. Any p-nilpotent restricted Lie superalgebra is nilpotent.

A (very) brief history of restricted cohomology

- 1955 (Hochschild): $H_{*}^{n}(L, M):=\operatorname{Ext}_{U(L)}^{n}(\mathbb{F}, M)$.

Gerhard Hochschild

A (very) brief history of restricted cohomology

- 1955 (Hochschild): $H_{*}^{n}(L, M):=\operatorname{Ext}_{U(L)}^{n}(\mathbb{F}, M)$.

Gerhard Hochschild

- 2000 (Evans-Fuchs): explicit constructions of 2-cocycles and central extensions.

Dmitry B. Fuchs

A (very) brief history of restricted cohomology

- 1955 (Hochschild): $H_{*}^{n}(L, M):=\operatorname{Ext}_{U(L)}^{n}(\mathbb{F}, M)$.

Gerhard Hochschild

- 2000 (Evans-Fuchs): explicit constructions of 2-cocycles and central extensions.

Dmitry B. Fuchs

- 2020: attempt to generalize to the superalgebras case.

Restricted cohomology for restricted Lie superalgebras

Let $L=L_{\overline{0}} \oplus L_{\overline{1}}$ be a restricted Lie superalgebra and let M be a L-supermodule.
We set $C_{*}^{0}(L, M)=M$ and $C_{*}^{1}(L, M)=\operatorname{Hom}(L, M)$.

Restricted cohomology for restricted Lie superalgebras

Let $L=L_{\overline{0}} \oplus L_{\overline{1}}$ be a restricted Lie superalgebra and let M be a L-supermodule.
We set $C_{*}^{0}(L, M)=M$ and $C_{*}^{1}(L, M)=\operatorname{Hom}(L, M)$.

Definition (Restricted 2-cochains)

Let $\varphi \in C_{C E}^{2}(L, M)$ (ordinary Chevalley-Eilenberg 2-cochain) and $\omega: L \longrightarrow M$. Then ω is φ-compatible if
(1) $\omega(\lambda x)=\lambda^{p} \omega(x), \lambda \in \mathbb{F}, x \in L_{\overline{0}}$;

Restricted cohomology for restricted Lie superalgebras

Let $L=L_{\overline{0}} \oplus L_{\overline{1}}$ be a restricted Lie superalgebra and let M be a L-supermodule.
We set $C_{*}^{0}(L, M)=M$ and $C_{*}^{1}(L, M)=\operatorname{Hom}(L, M)$.

Definition (Restricted 2-cochains)

Let $\varphi \in C_{C E}^{2}(L, M)$ (ordinary Chevalley-Eilenberg 2-cochain) and $\omega: L \longrightarrow M$. Then ω is φ-compatible if
(1) $\omega(\lambda x)=\lambda^{p} \omega(x), \lambda \in \mathbb{F}, x \in L_{\overline{0}}$;
(2) $\omega(x+y)=$

$$
\omega(x)+\omega(y)+\sum_{\substack{x_{i}=x \\ x_{1}=x, x_{2}=y}} \frac{1}{\pi(x)} \sum_{k=0}^{p-2}(-1)^{k} x_{\rho} \ldots x_{p-k+1} \varphi\left(\left[\left[\ldots\left[x_{1}, x_{2}\right], x_{3}\right] \ldots, x_{\rho-k-1}\right], x_{p-k}\right),
$$

with $x, y \in L, \pi(x)$ the number of factors x_{i} equal to x.

Restricted cohomology for restricted Lie superalgebras

Let $L=L_{\overline{0}} \oplus L_{\overline{1}}$ be a restricted Lie superalgebra and let M be a L-supermodule.
We set $C_{*}^{0}(L, M)=M$ and $C_{*}^{1}(L, M)=\operatorname{Hom}(L, M)$.

Definition (Restricted 2-cochains)

Let $\varphi \in C_{C E}^{2}(L, M)$ (ordinary Chevalley-Eilenberg 2-cochain) and $\omega: L \longrightarrow M$. Then ω is φ-compatible if
(1) $\omega(\lambda x)=\lambda^{p} \omega(x), \lambda \in \mathbb{F}, x \in L_{\overline{0}}$;
(2) $\omega(x+y)=$

$$
\omega(x)+\omega(y)+\sum_{\substack{x_{i}=x \text { or } y \\ x_{1}=x, x_{2}=y}} \frac{1}{\pi(x)} \sum_{k=0}^{p-2}(-1)^{k} x_{p} \ldots x_{p-k+1} \varphi\left(\left[\left[\ldots\left[x_{1}, x_{2}\right], x_{3}\right] \ldots, x_{p-k-1}\right], x_{p-k}\right),
$$

with $x, y \in L, \pi(x)$ the number of factors x_{i} equal to x.

$$
C_{*}^{2}(L, M)=\left\{(\varphi, \omega), \varphi \in C_{C E}^{2}(L, M), \omega \text { is } \varphi \text {-compatible }\right\}
$$

\rightsquigarrow We have a similar (although more complicated) definition for $C_{*}^{3}(L, M)$.

Restricted cohomology for restricted Lie superalgebras

- A restricted 2-cocycle is an element $(\alpha, \beta) \in C_{*}^{2}(L, M)$ such that
(1) $(-1)^{|x||z|} \alpha(x,[y, z])+(-1)^{|y||x|} \alpha(y,[z, x])+(-1)^{|z||y|} \alpha(z,[x, y])=0$, $\forall x, y, z \in L$;
(2) $\alpha\left(x, y^{[p]}\right)-\sum_{i+j=p-1}(-1)^{i} y^{i} \alpha([x, \underbrace{y, \cdots, y}_{j \text { terms }}], y)+(-1)^{|x||\alpha|} \times \beta(y)=0$,

$$
\forall x \in L, y \in L_{\overline{0}} .
$$

The space of restricted 2-cocycle is denoted by $Z_{*}^{2}(L, M)$.

Restricted cohomology for restricted Lie superalgebras

- A restricted 2-cocycle is an element $(\alpha, \beta) \in C_{*}^{2}(L, M)$ such that
$(-1)^{|x||z|} \alpha(x,[y, z])+(-1)^{|y||x|} \alpha(y,[z, x])+(-1)^{|z||y|} \alpha(z,[x, y])=0$
$\forall x, y, z \in L$
(2) $\alpha\left(x, y^{[p]}\right)-\sum_{i+j=p-1}(-1)^{i} y^{i} \alpha([x, \underbrace{y, \cdots, y}_{j \text { terms }}], y)+(-1)^{|x||\alpha|} x \beta(y)=0$, $\forall x \in L, y \in L_{\overline{0}}$.
The space of restricted 2-cocycle is denoted by $Z_{*}^{2}(L, M)$.
- A restricted 2-coboundary is an element $(\alpha, \beta) \in C_{*}^{2}(L, M)$ such that $\exists \varphi \in \operatorname{Hom}(L, M)$,
(1) $\alpha(x, y)=\varphi([x, y])-(-1)^{|x||\varphi|} x \varphi(y)+(-1)^{|y|(|\varphi|+|x|)} y \varphi(x), \forall x, y \in L$;
(2) $\beta(x)=\varphi\left(x^{[p]}\right)-x^{p-1} \varphi(x), \forall x \in L_{\overline{0}}$.

The space of restricted 2-coboundaries is denoted by $B_{*}^{2}(L, M)$.

Restricted cohomology for restricted Lie superalgebras

The previous formulae define maps

$$
0 \longrightarrow C_{*}^{0}(L, M) \xrightarrow{d_{*}^{0}} C_{*}^{1}(L, M) \xrightarrow{d_{*}^{1}} C_{*}^{2}(L, M) \xrightarrow{d_{*}^{2}} C_{*}^{3}(L, M),
$$

with $d_{*}^{0}=d_{C E}^{0}$.

Theorem

We have $d_{*}^{2} \circ d_{*}^{1}=0$. Therefore, the quotient space

$$
H_{*}^{2}(L ; M)=Z_{*}^{2}(L ; M) / B_{*}^{2}(L ; M)
$$

is well defined.

Restricted cohomology for restricted Lie superalgebras

Difficulty: the spaces $C_{*}^{2}(L ; M)$ and $C_{*}^{3}(L ; M)$ are not \mathbb{Z}_{2}-graded.

Restricted cohomology for restricted Lie superalgebras

Difficulty: the spaces $C_{*}^{2}(L ; M)$ and $C_{*}^{3}(L ; M)$ are not \mathbb{Z}_{2}-graded.
Let L be a restricted Lie superalgebra and M a restricted L-module. We define a subspace $C_{*}^{2}(L ; M)^{+} \subset C_{*}^{2}(L ; M)$ by

$$
C_{*}^{2}(L ; M)^{+}:=\left\{(\alpha, \beta) \in C_{*}^{2}(L ; M), \operatorname{Im}(\beta) \subseteq M_{\overline{0}}\right\} .
$$

Restricted cohomology for restricted Lie superalgebras

Difficulty: the spaces $C_{*}^{2}(L ; M)$ and $C_{*}^{3}(L ; M)$ are not \mathbb{Z}_{2}-graded.
Let L be a restricted Lie superalgebra and M a restricted L-module. We define a subspace $C_{*}^{2}(L ; M)^{+} \subset C_{*}^{2}(L ; M)$ by

$$
C_{*}^{2}(L ; M)^{+}:=\left\{(\alpha, \beta) \in C_{*}^{2}(L ; M), \operatorname{Im}(\beta) \subseteq M_{\overline{0}}\right\}
$$

Lemma

(i) We have an inclusion $B_{*}^{2}(L ; M)_{\overline{0}} \subset C_{*}^{2}(L ; M)^{+}$.
(ii) The space $C_{*}^{2}(L ; M)^{+}$is \mathbb{Z}_{2}-graded and the degree of an homogeneous element $(\alpha, \beta) \in C_{*}^{2}(L ; M)^{+}$is given by $|(\alpha, \beta)|=|\alpha|$.

This Lemma allows us to consider the space $Z_{*}^{2}(L ; M)^{+}:=\operatorname{ker}\left(d_{* \mid C_{*}^{2}(L ; M)^{+}}^{2}\right)$. Thus we can define

$$
H_{*}^{2}(L ; M)^{+}:=Z_{*}^{2}(L ; M)^{+} / B_{*}^{2}(L ; M)_{\overline{0}} .
$$

The space $H_{*}^{2}(L ; M)^{+}$is \mathbb{Z}_{2}-graded.

Central extensions of restricted Lie superalgebras

Let $\left(L,[\cdot, \cdot],(\cdot)^{[p]}\right)$ be a restricted Lie superalgebra, and M be a strongly abelian restricted Lie superalgebra (i.e, $[m, n]=0 \forall m, n \in M$, and $m^{[p]}=0 \forall m \in M_{\overline{0}}$).

A restricted extension of L by M is a short exact sequence of restricted Lie superalgebras

$$
0 \longrightarrow M \xrightarrow{\iota} E \xrightarrow{\pi} L \longrightarrow 0 .
$$

Central extensions of restricted Lie superalgebras

Let $\left(L,[\cdot, \cdot],(\cdot)^{[p]}\right)$ be a restricted Lie superalgebra, and M be a strongly abelian restricted Lie superalgebra (i.e, $[m, n]=0 \forall m, n \in M$, and $m^{[p]}=0 \forall m \in M_{\overline{0}}$).

A restricted extension of L by M is a short exact sequence of restricted Lie superalgebras

$$
0 \longrightarrow M \xrightarrow{\iota} E \xrightarrow{\pi} L \longrightarrow 0 .
$$

In the case where $\iota(M) \subset \mathfrak{z}(E):=\{a \in E,[a, b]=0 \forall b \in E\}, M$ is a trivial L-module. These extensions are called restricted central extensions.

Two restricted central extensions of L by M are called equivalent if there is a restricted Lie superalgebras morphism $\sigma: E_{1} \rightarrow E_{2}$ such that the following diagram commutes:

Central extensions of restricted Lie superalgebras

$$
0 \longrightarrow M \xrightarrow{\iota} E \xrightarrow{\pi} L \longrightarrow 0 .
$$

Theorem

Let L be a restricted Lie superalgebra and M a strongly abelian restricted Lie superalgebra. Then, the equivalence classes of restricted central extensions of L by M are classified by $H_{*}^{2}(L ; M)_{0}^{ \pm}$.

Central extensions of restricted Lie superalgebras

$$
0 \longrightarrow M \xrightarrow{\iota} E \xrightarrow{\pi} L \longrightarrow 0 .
$$

Theorem

Let L be a restricted Lie superalgebra and M a strongly abelian restricted Lie superalgebra. Then, the equivalence classes of restricted central extensions of L by M are classified by $H_{*}^{2}(L ; M)_{0}^{ \pm}$.

Structure maps on E. Let $(\varphi, \omega) \in Z_{*}^{2}(L ; \mathbb{K})_{\overline{0}}^{+}$. The bracket and the p - map on E are given by

$$
\begin{align*}
{[x+m, y+n]_{E} } & :=[x, y]+\varphi(x, y), \forall x, y \in L, \forall m, n \in M ; \tag{1}\\
(x+m)^{[p]_{E}}: & =(x)^{[p]}+\omega(x), \forall x \in L_{\overline{0}}, \forall m \in M_{\overline{0}} . \tag{2}
\end{align*}
$$

A brief history of classification of restricted Lie algebras

- 2016 (Schneider and Usefi): Classification of p-nilpotent restricted Lie algebras of dimension ≤ 4 (Forum Math.);

A brief history of classification of restricted Lie algebras

- 2016 (Schneider and Usefi): Classification of p-nilpotent restricted Lie algebras of dimension ≤ 4 (Forum Math.);
- 2016 (Darijani and Usefi): Classification of p-nilpotent restricted Lie algebras of dimension $5, p \geq 3$, contains some mistakes (J. Algebra);

A brief history of classification of restricted Lie algebras

- 2016 (Schneider and Usefi): Classification of p-nilpotent restricted Lie algebras of dimension ≤ 4 (Forum Math.);
- 2016 (Darijani and Usefi): Classification of p-nilpotent restricted Lie algebras of dimension 5, $p \geq 3$, contains some mistakes (J. Algebra);
- 2023 (Maletesta and Siciliano): Classification of p-nilpotent restricted Lie algebras of dimension $5, p \geq 3$, using another method (J. Algebra).

Dimension 3

- $\underline{\operatorname{sdim}(L)=(1 \mid 2):} L=\left\langle e_{1} \mid e_{2}, e_{3}\right\rangle$.
(1) $\mathbf{L}_{1 \mid 2}^{1}=\left\langle e_{1} \mid e_{2}, e_{3}\right\rangle$ (abelian):
(1) $e_{1}^{[p]}=0$;
(2) $\mathrm{L}_{1 \mid 2}^{2}=\left\langle e_{1} \mid e_{2}, e_{3} ;\left[e_{2}, e_{3}\right]=e_{1}\right\rangle$:
(1) $e_{1}^{[p]}=0$;
- $\underline{\operatorname{sdim}(L)=(2 \mid 1):} L=\left\langle e_{1}, e_{2} \mid e_{3}\right\rangle$.
(1) $\mathbf{L}_{2 \mid 1}^{1}=\left\langle e_{1}, e_{2} \mid e_{3}\right\rangle$ (abelian):
(1) $e_{1}^{[p]}=e_{2}^{[p]}=0 ;$
(2) $e_{1}^{[p]}=e_{2}, e_{2}^{[p]}=0$.
(3) $\mathbf{L}_{1 \mid 2}^{3}=\left\langle e_{1} \mid e_{2}, e_{3} ;\left[e_{1}, e_{2}\right]=e_{3}\right\rangle$:
(1) $e_{1}^{[p]}=0$.
(4) $\mathrm{L}_{1 \mid 2}^{4}=\left\langle e_{1} \mid e_{2}, e_{3} ;\left[e_{3}, e_{3}\right]=e_{1}\right\rangle$:
(1) $e_{1}^{[p]}=0$;
(2) $\mathbf{L}_{2 \mid 1}^{2}=\left\langle e_{1}, e_{2} \mid e_{3} ;\left[e_{3}, e_{3}\right]=e_{2}\right\rangle$:
(1) $e_{1}^{[p]}=e_{2}^{[p]}=0$;
(2) $e_{1}^{[p]}=e_{2}, e_{2}^{[p]}=0$.
- $\underline{\operatorname{sdim}(L)=(3 \mid 0)}: L=\left\langle e_{1}, e_{2}, e_{3}\right\rangle$, (see Schneider-Usefi).
(1) $\mathbf{L}_{3 \mid 0}^{1}=\left\langle e_{1}, e_{2}, e_{3}\right\rangle$ (abelian):
(1) $e_{1}^{[p]}=e_{2}^{[p]}=e_{3}^{[p]}=0$;
(2) $e_{1}^{[p]}=e_{2}, e_{2}^{[p]}=e_{3}^{[p]}=0$;
(3) $e_{1}^{[p]}=e_{2}, e_{2}^{[p]}=e_{3}, e_{3}^{[p]}=0$.
(2) $\mathbf{L}_{3 \mid 0}^{2}=\left\langle e_{1}, e_{2}, e_{3} ;\left[e_{1}, e_{2}\right]=e_{3}\right\rangle$
(1) $e_{1}^{[p]}=e_{2}^{[p]}=e_{3}^{[p]}=0$;
(2) $e_{1}^{[p]}=e_{3}, e_{2}^{[p]}=e_{3}^{[p]}=0$.

Dimension 4: scalar restricted 2-cocycles

Let L be a restricted Lie superalgebra and M be a restricted L-module. Let $(\varphi, \omega) \in Z_{*}^{2}(L ; M)$ and A be a restricted automorphism of L. An action is given by $A \cdot(\varphi, \omega):=(A \varphi, A \omega)$, with

$$
\begin{cases}(A \varphi)(x, y) & =\varphi(A(x), A(y)), \quad \forall x, y \in L \tag{3}\\ (A \omega)(x) & =\omega(A(x)), \forall x \in L_{\bar{o}}\end{cases}
$$

Dimension 4: scalar restricted 2-cocycles

Let L be a restricted Lie superalgebra and M be a restricted L-module. Let $(\varphi, \omega) \in Z_{*}^{2}(L ; M)$ and A be a restricted automorphism of L. An action is given by $A \cdot(\varphi, \omega):=(A \varphi, A \omega)$, with

$$
\begin{cases}(A \varphi)(x, y) & =\varphi(A(x), A(y)), \quad \forall x, y \in L \tag{3}\\ (A \omega)(x) & =\omega(A(x)), \forall x \in L_{\bar{o}}\end{cases}
$$

Proposition

- Let L be a p-nilpotent restricted Lie superalgebra of dimension n. Then, L is isomorphic to a central extension by a restricted 2-cocycle of a p-nilpotent restricted Lie superalgebra of dimension $n-1$.
- Equivalent 2-cocycles lead to isomorphic extensions.

Dimension 4: scalar restricted 2-cocycles

Notation: Let $L=L_{\overline{0}} \oplus L_{\overline{1}}=\left\langle e_{1}, \cdots, e_{n} \mid e_{n+1}, \cdots, e_{n+m}\right\rangle$ be a restricted Lie superalgebra of superdimension $\operatorname{sdim}(L)=(n \mid m)$. A basis for (ordinary) 2-cocycles is then given by

$$
\Delta_{i, j}: L \times L \longrightarrow \mathbb{K}, \quad 1 \leq i \leq n+m, i \leq j \leq n+m,
$$

where $\Delta_{i, j}\left(e_{k}, e_{l}\right)=\delta_{i, k} \delta_{j, l}$ and $\Delta_{i, j}=-(-1)^{\left|e_{i}\right|\left|e_{j}\right|} \Delta_{j, i}$.

Dimension 4: scalar restricted 2-cocycles

Notation: Let $L=L_{\overline{0}} \oplus L_{\overline{1}}=\left\langle e_{1}, \cdots, e_{n} \mid e_{n+1}, \cdots, e_{n+m}\right\rangle$ be a restricted Lie superalgebra of superdimension $\operatorname{sdim}(L)=(n \mid m)$. A basis for (ordinary) 2-cocycles is then given by

$$
\Delta_{i, j}: L \times L \longrightarrow \mathbb{K}, \quad 1 \leq i \leq n+m, i \leq j \leq n+m,
$$

where $\Delta_{i, j}\left(e_{k}, e_{l}\right)=\delta_{i, k} \delta_{j, l}$ and $\Delta_{i, j}=-(-1)^{\left|e_{i}\right|\left|e_{j}\right|} \Delta_{j, i}$.

Theorem

Suppose that L is a nilpotent Lie superalgebra of total dimension 3 with $\operatorname{dim}\left(L_{\overline{1}}\right) \geq 1$ over an algebraically closed field of characteristic $p \geq 3$. The equivalence classes of (ordinary) non trivial homogeneous 2-cocycles on L are given by

$$
\begin{aligned}
& L=\mathbf{L}_{0 \mid 3}^{1}: \Delta_{1,1}, \quad \Delta_{1,2}, \Delta_{1,1}+\Delta_{2,3} \\
& L=\mathbf{L}_{1 \mid 2}^{1}: \Delta_{1,2}, \Delta_{2,3}, \Delta_{2,2}+\Delta_{2,3}+\Delta_{3,3} \\
& L=\mathbf{L}_{1 \mid 2}^{2}: \Delta_{2,2}, \Delta_{2,2}+\Delta_{3,3} \\
& L=\mathbf{L}_{1 \mid 2}^{3}: \Delta_{1,3}, \Delta_{2,2} \\
& L=\mathbf{L}_{1 \mid 2}^{4}: \Delta_{2,2}, \Delta_{2,3}, \Delta_{2,2}+\Delta_{2,3} \\
& L=\mathbf{L}_{2 \mid \mathbf{1}}^{1}: \Delta_{1,3}, \Delta_{1,2}, \Delta_{3,3}, \Delta_{1,2}+\Delta_{3,3} \\
& L=\mathbf{L}_{2 \mid \mathbf{1}}^{2}: \Delta_{1,3}
\end{aligned}
$$

Dimension 4: the classification. Building the extensions.

With the list of 2-cocycles, we can extend the Lie brackets using

$$
\begin{equation*}
[x, y]_{\text {new }}=[x, y]_{\text {old }}+\Delta(x, y) X \tag{4}
\end{equation*}
$$

Dimension 4: the classification. Building the extensions.

With the list of 2-cocycles, we can extend the Lie brackets using

$$
\begin{equation*}
[x, y]_{\text {new }}=[x, y]_{\text {old }}+\Delta(x, y) X \tag{4}
\end{equation*}
$$

Example. Consider $\mathbf{L}_{\mathbf{1} \mid 2}^{\mathbf{3}}=\left\langle e_{1} \mid e_{2}, e_{3} ;\left[e_{1}, e_{2}\right]=e_{3}\right\rangle$. The 2-cocycles are $\Delta_{1,3}$ and $\Delta_{2,2}$. We obtain four superalgebras of dimension 4.

Name	sdim	Cocycle	Added element	Bracket
$\mathbf{L}_{\mathbf{2} \mid \mathbf{2}}^{\mathbf{g}}$	$(2 \mid 2)$	0	X even	$\left[e_{1}, e_{2}\right]=e_{3}$
$\mathbf{L}_{1 \mid 3}^{\mathbf{d}}$	$(1 \mid 3)$	0	X odd	$\left[e_{1}, e_{2}\right]=e_{3}$
$\mathbf{L}_{\mathbf{1} \mid \mathbf{3}}^{\mathrm{e}}$	$(1 \mid 3)$	$\Delta_{1,3}$	X odd	$\left[e_{1}, e_{2}\right]=e_{3},\left[e_{1}, e_{3}\right]=X$
$\mathbf{L}_{\mathbf{2} \mid \mathbf{2}}$	$(2 \mid 2)$	$\Delta_{2,2}$	X even	$\left[e_{1}, e_{2}\right]=e_{3},\left[e_{2}, e_{2}\right]=X$

Lie superalgebras obtained by central extensions of $\mathbf{L}_{\mathbf{1} \mid 2}$.

Dimension 4: the classification. Detecting isomorphisms.

It is possible that two superalgebras obtained as central extensions by non-equivalent cocycles are isomorphic. We need to detect and remove redundancies.

L	$[L, L]$	$\operatorname{sdim}(\mathfrak{z}(L))$	$\operatorname{sdim}\left(H_{\mathrm{CE}}^{1}(L ; \mathbb{K})\right)$	$\operatorname{sdim}\left(H_{\mathrm{CE}}^{2}(L ; \mathbb{K})\right)$	$\operatorname{sdim}\left(H_{\mathrm{CE}}^{3}(L ; \mathbb{K})\right)$
$\mathbf{L}_{\mathbf{1} \mid \mathbf{3}}^{\mathrm{a}}$	0	$1 \mid 3$	$1 \mid 3$	$6 \mid 3$	$7 \mid 9$
$\mathbf{L}_{1 \mid 3}^{\mathbf{b}}$	$\langle X\rangle$	$0 \mid 2$	$1 \mid 2$	$3 \mid 2$	$3 \mid 4(3 \mid 5$ if $p=3)$
$\mathbf{L}_{1 \mid 3}^{\mathrm{c}}$	$\left\langle e_{1}\right\rangle$	$1 \mid 1$	$0 \mid 3$	$5 \mid 0$	$0 \mid 7$
$\mathbf{L}_{\mathbf{1} \mid 3}^{\mathrm{e}}$	$\left\langle e_{3}, X\right\rangle$	$0 \mid 1$	$1 \mid 1$	$2 \mid 1$	$2 \mid 2(2 \mid 4$ if $p=3)$
$\mathbf{L}_{1 \mid 3}^{\mathrm{f}}$	$\left\langle e_{1}\right\rangle$	$1 \mid 2$	$0 \mid 3$	$5 \mid 0$	$0 \mid 7$
$\mathbf{L}_{1 \mid 3}^{\mathrm{j}}$	$\langle X\rangle$	$1 \mid 0$	$0 \mid 3$	$5 \mid 0$	$0 \mid 7$

Invariants for Lie superalgebras of $\operatorname{sdim}=(1 \mid 3)$.

Dimension 4: the classification. Lie superalgebras.
Theorem
The classification of 4-dimensional nilpotent Lie superalgebras over an algebraically closed field of characteristic different from 2 is given by:

$$
\begin{aligned}
& \underline{\operatorname{sdim}(L)=(0 \mid 4)}: L=\left\langle 0 \mid x_{1}, x_{2}, x_{3}, x_{4}\right\rangle \\
& \mathbf{L}_{\mathbf{0 | 4}}^{1}:[\cdot, \cdot]=0 \text {. } \\
& \underline{\operatorname{sdim}(L)=(1 \mid 3): ~} L=\left\langle x_{1} \mid x_{2}, x_{3}, x_{4}\right\rangle \\
& \mathbf{L}_{1 \mid 3}^{1}\left(=\mathbf{L}_{1 \mid 3}^{\mathbf{a}}\right) \text { : abelian; } \\
& \mathbf{L}_{1 \mid 3}^{2}\left(=\mathbf{L}_{1 \mid 3}^{\mathrm{b}}\right):\left[x_{1}, x_{3}\right]=x_{4} \text {; } \\
& \mathbf{L}_{1 \mid 3}^{3}\left(=\mathbf{L}_{1 \mid 3}^{\mathbf{c}}\right):\left[x_{2}, x_{3}\right]=x_{1} \text {; } \\
& \mathbf{L}_{1 \mid 3}^{4}\left(=\mathbf{L}_{1 \mid 3}^{\mathbf{e}}\right):\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=x_{4} \text {; } \\
& \mathbf{L}_{1 \mid 3}^{5}\left(=\mathbf{L}_{1 \mid 3}^{\mathbf{f}}\right):\left[x_{3}, x_{3}\right]=x_{1} \text {; } \\
& \mathbf{L}_{1 \mid 3}^{6}\left(=\mathbf{L}_{1 \mid 3}^{\mathbf{j}}\right):\left[x_{2}, x_{2}\right]=x_{1},\left[x_{3}, x_{4}\right]=x_{1} . \\
& \operatorname{sdim}(L)=(2 \mid 2): L=\left\langle x_{1}, x_{2} \mid x_{3}, x_{4}\right\rangle \\
& \mathbf{L}_{2 \mid 2}^{\mathbf{1}}\left(=\mathbf{L}_{2 \mid 2}^{\mathbf{a}}\right) \text { : abelian; } \\
& \mathbf{L}_{2 \mid 2}^{2}\left(=\mathbf{L}_{2 \mid 2}^{\mathbf{b}}\right):\left[x_{3}, x_{4}\right]=x_{2} \text {; } \\
& \mathbf{L}_{2 \mid 2}^{3}\left(=\mathbf{L}_{2 \mid 2}^{\mathbf{e}}\right):\left[x_{3}, x_{3}\right]=x_{2},\left[x_{3}, x_{4}\right]=x_{1} \text {; } \\
& \mathbf{L}_{2 \mid 2}^{4}\left(=\mathbf{L}_{2 \mid 2}^{\mathbf{f}}\right):\left[x_{3}, x_{3}\right]=\left[x_{4}, x_{4}\right]=x_{2},\left[x_{3}, x_{4}\right]=x_{1} ; \\
& \mathbf{L}_{2 \mid 2}^{5}\left(=\mathbf{L}_{2 \mid 2}^{\mathrm{g}}\right):\left[x_{1}, x_{3}\right]=x_{4} \text {; } \\
& \mathbf{L}_{2 \mid 2}^{6}\left(=\mathbf{L}_{2 \mid 2}^{\mathbf{h}}\right):\left[x_{1}, x_{3}\right]=x_{4},\left[x_{3}, x_{3}\right]=x_{2} \text {. } \\
& \mathbf{L}_{2 \mid 2}^{7}\left(=\mathbf{L}_{2 \mid 2}^{i}\right):\left[x_{4}, x_{4}\right]=x_{1} .
\end{aligned}
$$

Dimension 4: the classification. $p \mid 2 p$ maps.

Theorem (Jacobson)
Let $\left(e_{j}\right)_{j \in J}$ be a basis of $L_{\overline{0}}$, and let the elements $f_{j} \in L_{\overline{0}}$ be such that

$$
\begin{equation*}
\left(\operatorname{ad}_{e_{j}}\right)^{p}=\operatorname{ad}_{f_{j}} . \tag{5}
\end{equation*}
$$

Then, there exists exactly one $p \mid 2 p$-mapping $(\cdot)^{[p \mid 2 p]}: L \rightarrow L$ such that

$$
e_{j}^{[p]}=f_{j} \quad \text { for all } j \in J
$$

Dimension 4: the classification. $p \mid 2 p$ maps.

Theorem (Jacobson)

Let $\left(e_{j}\right)_{j \in J}$ be a basis of $L_{\overline{0}}$, and let the elements $f_{j} \in L_{\overline{0}}$ be such that

$$
\begin{equation*}
\left(\mathrm{ad}_{e_{j}}\right)^{p}=\operatorname{ad}_{f_{j}} . \tag{5}
\end{equation*}
$$

Then, there exists exactly one $p \mid 2 p$-mapping $(\cdot)^{[p \mid 2 p]}: L \rightarrow L$ such that

$$
e_{j}^{[p]}=f_{j} \quad \text { for all } j \in J
$$

- Suppose that $L=L_{\overline{0}} \oplus L_{\overline{1}}$ is a p-nilpotent restricted Lie superalgebra. Then $L_{\overline{0}}$ is a p-nilpotent restricted Lie algebra with a p-map $(\cdot)^{[p]}$.

Dimension 4: the classification. $p \mid 2 p$ maps.

Theorem (Jacobson)

Let $\left(e_{j}\right)_{j \in J}$ be a basis of $L_{\overline{0}}$, and let the elements $f_{j} \in L_{\overline{0}}$ be such that

$$
\begin{equation*}
\left(\mathrm{ad}_{e_{j}}\right)^{p}=\operatorname{ad}_{f_{j}} . \tag{5}
\end{equation*}
$$

Then, there exists exactly one $p \mid 2 p$-mapping $(\cdot)^{[p \mid 2 p]}: L \rightarrow L$ such that

$$
e_{j}^{[p]}=f_{j} \quad \text { for all } j \in J
$$

- Suppose that $L=L_{\overline{0}} \oplus L_{\overline{1}}$ is a p-nilpotent restricted Lie superalgebra. Then $L_{\overline{0}}$ is a p-nilpotent restricted Lie algebra with a p-map $(\cdot)^{[p]}$.
- The classification of 4-dimensional restricted Lie algebras has been achieved by Schneider-Usefi.

Dimension 4: the classification. $p \mid 2 p$ maps.

Theorem (Jacobson)

Let $\left(e_{j}\right)_{j \in J}$ be a basis of $L_{\overline{0}}$, and let the elements $f_{j} \in L_{\overline{0}}$ be such that

$$
\begin{equation*}
\left(\mathrm{ad}_{e_{j}}\right)^{p}=\operatorname{ad}_{f_{j}} . \tag{5}
\end{equation*}
$$

Then, there exists exactly one $p \mid 2 p$-mapping $(\cdot)^{[p \mid 2 p]}: L \rightarrow L$ such that

$$
e_{j}^{[p]}=f_{j} \quad \text { for all } j \in J
$$

- Suppose that $L=L_{\overline{0}} \oplus L_{\overline{1}}$ is a p-nilpotent restricted Lie superalgebra. Then $L_{\overline{0}}$ is a p-nilpotent restricted Lie algebra with a p-map $(\cdot)^{[p]}$.
- The classification of 4-dimensional restricted Lie algebras has been achieved by Schneider-Usefi.
- We only have to check whether these p-maps satisfy Condition (5).

Dimension 4: the classification. $p \mid 2 p$ maps.

Theorem

The p-nilpotent structures on nilpotent Lie superalgebras of total dimension 4 with $\operatorname{dim}\left(L_{\overline{1}}\right)>0$ are given by:

- $\operatorname{sdim}(L)=(0 \mid 4):$ none.
- $\operatorname{sdim}(L)=(1 \mid 3): x_{1}^{[p]}=0$.
- $\operatorname{sdim}(L)=(2 \mid 2)$:

$$
\begin{aligned}
& x_{1}^{[p]_{1}}=x_{2}^{[p]_{1}}=0 \\
& x_{1}^{[p]_{2}}=x_{2}, x_{2}^{[p]_{2}}=0 .
\end{aligned}
$$

- $\operatorname{sdim}(L)=(3 \mid 1)$:

$$
\begin{aligned}
& \text { Case } L_{\overline{0}} \text { abelian: } \\
& \begin{aligned}
& {[p]_{1} }=x_{2}^{[p]_{1}}=x_{3}^{[p]_{1}}=0 ; \\
& x_{1}^{[p]_{2}}=x_{2}, x_{2}^{[p]_{2}}=x_{3}^{[p]_{2}}=0 . \\
& x_{1}^{[p]_{3}}=x_{2}, x_{2}^{[p]_{3}}=x_{3}, x_{3}^{[p]_{3}}=0 .
\end{aligned}
\end{aligned}
$$

$$
\text { Case } L_{\overline{0}} \cong \mathbf{L}_{3 \mid 0}^{2}=\left\langle x_{1}, x_{2}, x_{3} ;\left[x_{1}, x_{2}\right]=x_{3}\right\rangle:
$$

$$
\begin{aligned}
& x_{1}^{[p]_{4}}=x_{2}^{[p]_{4}}=x_{3}^{[p]_{4}}=0 ; \\
& x_{1}^{[p]_{5}}=x_{3}, x_{2}^{[p]_{5}}=x_{3}^{[p]_{5}}=0
\end{aligned}
$$

Thank you for your attention!

