Central extensions of restricted Lie superalgebras and classification of *p*-nilpotent Lie superalgebras in dimension 4

Quentin Ehret

Mulhouse, Mars 2024

Joint work with Sofiane Bouarroudj

جامعـة نيويورك أبوظـي NYU ABU DHABI

<ロト <回ト < 注ト < 注ト = 注。

Let \mathbb{K} be a field of characteristic p > 2, algebraically closed.

• Our goals:

- ► classification of low-dimensional *p*-nilpotent restricted Lie superalgebras over K.
- superization of formulas for the restricted cohomology.

Let \mathbb{K} be a field of characteristic p > 2, algebraically closed.

- Our goals:
 - ► classification of low-dimensional *p*-nilpotent restricted Lie superalgebras over K.
 - superization of formulas for the restricted cohomology.
- Our tool: restricted central extensions:

Let \mathbb{K} be a field of characteristic p > 2, algebraically closed.

• Our goals:

- classification of low-dimensional *p-nilpotent restricted* Lie superalgebras over K.
- superization of formulas for the restricted cohomology.
- Our tool: restricted central extensions:

Proposition

Let L be a p-nilpotent restricted Lie superalgebra of dimension n. Then, L is isomorphic to a central extension by a restricted 2-cocycle of a p-nilpotent restricted Lie superalgebra of dimension n - 1.

Let \mathbb{K} be a field of characteristic p > 2, algebraically closed.

• Our goals:

- classification of low-dimensional *p-nilpotent restricted* Lie superalgebras over K.
- superization of formulas for the restricted cohomology.
- Our tool: restricted central extensions:

Proposition

Let L be a p-nilpotent restricted Lie superalgebra of dimension n. Then, L is isomorphic to a central extension by a restricted 2-cocycle of a p-nilpotent restricted Lie superalgebra of dimension n - 1.

• What do we need? Restricted 2-cocycles of the restricted cohomology for restricted Lie superalgebras.

Introduction

Preliminaries

8 Restricted cohomology and central extensions

- Chevalley-Eilenberg cohomology for Lie superalgebras
- A (very) brief history of restricted cohomology
- Restricted cohomology for restricted Lie superalgebras
- Central extensions of restricted Lie superalgebras

Classification of low dimensional restricted Lie superalgebras

- A brief history of classification of restricted Lie algebras
- Dimension 3
- Dimension 4: scalar restricted 2-cocycles
- Dimension 4: the classification

Let \mathbb{K} a field of characteristic p > 2 and A an associative \mathbb{K} -algebra. With the commutator, it's a Lie algebra. The adjoint representation is then given by

$$\operatorname{ad}_{x}(y) = xy - yx.$$

Let \mathbb{K} a field of characteristic p > 2 and A an associative \mathbb{K} -algebra. With the commutator, it's a Lie algebra. The adjoint representation is then given by

$$\operatorname{ad}_{x}(y) = xy - yx.$$

Let m > 0. Then

$$\operatorname{ad}_{x}^{m}(y) = \sum_{j=0}^{m} \binom{m}{j} (-1)^{m-j} x^{j} y x^{m-j}.$$

Let \mathbb{K} a field of characteristic p > 2 and A an associative \mathbb{K} -algebra. With the commutator, it's a Lie algebra. The adjoint representation is then given by

$$\operatorname{\mathsf{ad}}_{x}(y) = xy - yx.$$

Let m > 0. Then

$$\operatorname{ad}_{x}^{m}(y) = \sum_{j=0}^{m} \binom{m}{j} (-1)^{m-j} x^{j} y x^{m-j}.$$

Then, if m = p, we obtain

$$\operatorname{ad}_{x}^{p}(y) = x^{p}y - yx^{p} = \operatorname{ad}_{x^{p}}(y).$$

4 ロ ト 4 団 ト 4 茎 ト 4 茎 ト 茎 の Q ペ 4/28

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map $(\cdot)^{[p]} : L \longrightarrow L$ satisfying for all $x, y \in L$ and for all $\lambda \in \mathbb{K}$:

$$(\lambda x)^{[p]} = \lambda^p x^{[p]};$$

Nathan Jacobson (1910-1999)

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map $(\cdot)^{[p]} : L \longrightarrow L$ satisfying for all $x, y \in L$ and for all $\lambda \in \mathbb{K}$:

$$(\lambda x)^{[p]} = \lambda^p x^{[p]};$$

$$[x, y^{[p]}] = [[\cdots [x, y], y], \cdots, y];$$

Nathan Jacobson (1910-1999)

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map $(\cdot)^{[p]} : L \longrightarrow L$ satisfying for all $x, y \in L$ and for all $\lambda \in \mathbb{K}$:

(
$$\lambda x$$
)^[p] = $\lambda^{p} x^{[p]}$;
($x, y^{[p]}$] = [[$\cdots [x, y], y$], \cdots, y];
($x + y$)^[p] = $x^{[p]} + y^{[p]} + \sum_{i=1}^{p-1} s_{i}(x, y)$,

Nathan Jacobson (1910-1999)

with $is_i(x, y)$ the coefficient of Z^{i-1} in $ad_{Zx+y}^{p-1}(x)$. Such a map $(-)^{[p]}: L \longrightarrow L$ is called p-map.

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map $(\cdot)^{[p]} : L \longrightarrow L$ satisfying for all $x, y \in L$ and for all $\lambda \in \mathbb{K}$:

•
$$(\lambda x)^{[p]} = \lambda^{p} x^{[p]};$$

• $[x, y^{[p]}] = [[\cdots [x, y], y], \cdots, y];$
• $(x + y)^{[p]} = x^{[p]} + y^{[p]} + \sum_{i=1}^{p-1} s_{i}(x, y),$

Nathan Jacobson (1910-1999)

with $is_i(x, y)$ the coefficient of Z^{i-1} in $ad_{Zx+y}^{p-1}(x)$. Such a map $(-)^{[p]}: L \longrightarrow L$ is called p-map.

Example: any associative algebra A with [a, b] = ab - ba and $a^{[p]} = a^p$, $\forall a, b \in A$.

Very useful :

$$\sum_{i=1}^{p-1} s_i(x, y) = \sum_{\substack{x_i = x \text{ or } y \\ x_p = x, x_{p-1} = y}} \frac{1}{\sharp\{x\}} [x_1, [x_2, [..., [x_{p-1}, x_p]...],$$

Very useful :

$$\sum_{i=1}^{p-1} s_i(x, y) = \sum_{\substack{x_i = x \text{ or } y \\ x_p = x, x_{p-1} = y}} \frac{1}{\sharp\{x\}} [x_1, [x_2, [..., [x_{p-1}, x_p]...],$$

Definition

A Lie algebra morphism $f : (L, [\cdot, \cdot], (\cdot)^{[p]}) \to (L', [\cdot, \cdot]', (\cdot)^{[p]'})$ is called restricted if

$$f(x^{[p]}) = f(x)^{[p]'}, \ \forall x \in L$$

A L-module M is called restricted if

$$x^{[p]} \cdot m = \left(\overbrace{x \cdot (x \cdots (x \cdot m) \cdots)}^{p \text{ terms}}\right), \ \forall x \in L, \ \forall m \in M.$$

Lie superalgebras

Definition

A Lie superalgebra $L = L_{\bar{0}} \oplus L_{\bar{1}}$ is a $\mathbb{Z}/2\mathbb{Z}$ -graded vector space equipped with a bilinear map $[\cdot, \cdot] : L \times L \to L$ satisfying for $x, y, z \in L$:

$$\begin{aligned} & |[x,y]| = |x| + |y|; \\ & (x,y) = -(-1)^{|x||y|}[y,x]; \\ & (-1)^{|x||z|}[x,[y,z]] + (-1)^{|x||y|}[y,[z,x]] + (-1)^{|y||z|}[z,[x,y]] = 0. \end{aligned}$$

If p = 3, the identity [x, [x, x]] = 0, $x \in L_{\overline{1}}$ has to be added as an axiom as well.

Lie superalgebras

Definition

A Lie superalgebra $L = L_{\bar{0}} \oplus L_{\bar{1}}$ is a $\mathbb{Z}/2\mathbb{Z}$ -graded vector space equipped with a bilinear map $[\cdot, \cdot] : L \times L \to L$ satisfying for $x, y, z \in L$:

$$\begin{aligned} & |[x,y]| = |x| + |y|; \\ & (x,y] = -(-1)^{|x||y|}[y,x]; \\ & (-1)^{|x||z|}[x,[y,z]] + (-1)^{|x||y|}[y,[z,x]] + (-1)^{|y||z|}[z,[x,y]] = 0. \end{aligned}$$

If p = 3, the identity [x, [x, x]] = 0, $x \in L_{\overline{1}}$ has to be added as an axiom as well.

Let $f: V \to W$ be a map between $\mathbb{Z}/2\mathbb{Z}$ -graded vector spaces. Then:

- the map f is called **even** if $f(V_{\overline{i}}) \subset W_{\overline{i}}$;
- the map f is called **odd** if $f(V_{\overline{i}}) \subset W_{\overline{i+1}}$;

Definition (Restricted Lie superalgebra)

A restricted Lie superalgebra is a Lie superalgebra $L=L_{\bar{0}}\oplus L_{\bar{1}}$ such that

- The even part $L_{\bar{0}}$ is a restricted Lie algebra;
- **2** The odd part $L_{\overline{1}}$ is a Lie $L_{\overline{0}}$ -module;

3
$$[x, y^{[p]}] = [[...[x, y], y], ..., y], \forall x \in L_{\bar{1}}, y \in L_{\bar{0}}.$$

Definition (Restricted Lie superalgebra)

A restricted Lie superalgebra is a Lie superalgebra $L=L_{\bar{0}}\oplus L_{\bar{1}}$ such that

・ロト・日本・日本・日本・日本・日本

Definition (Restricted Lie superalgebra)

A restricted Lie superalgebra is a Lie superalgebra $L = L_{\bar{0}} \oplus L_{\bar{1}}$ such that

• The even part
$$L_{\bar{0}}$$
 is a restricted Lie algebra;

2 The odd part $L_{\overline{1}}$ is a Lie $L_{\overline{0}}$ -module;

$$[x, y^{[p]}] = [[...[x, y], y], ..., y], \quad \forall x \in L_{\bar{1}}, y \in L_{\bar{0}}.$$

We can define a map $(\cdot)^{\lfloor 2p
floor}:L_{ar{1}}
ightarrow L_{ar{0}}$ by

$$x^{[2p]} = (x^2)^{[p]}, \text{ with } x^2 = \frac{1}{2}[x,x], x \in L_{\bar{1}}.$$

Theorem (Jacobson)

Let $(e_j)_{j \in J}$ be a basis of $L_{\bar{0}}$, and let the elements $f_j \in L_{\bar{0}}$ be such that $(\mathrm{ad}_{e_j})^p = \mathrm{ad}_{f_j}$. Then, there exists exactly one p|2p-mapping $(\cdot)^{[p|2p]} : L \to L$ such that

$$e_{j}^{\left[p
ight] }=f_{j}$$
 for all $j\in$ J.

Let L be a Lie superalgebra. We define a descending central sequence by

$$C^{0}(L) = L$$
, and $C^{k+1}(L) = [C^{k}(L), L]$.

The Lie superalgebra L is called *nilpotent* if there exists $k \ge 0$ such that $C^{k}(L) = 0$.

Suppose that *L* is restricted. Then *L* is called *p*-nilpotent if there exists $n \ge 0$ such that $x^{[p]^n} = 0 \ \forall x \in L_{\bar{0}}$. Any *p*-nilpotent restricted Lie superalgebra is nilpotent.

Chevalley-Eilenberg cohomology for Lie superalgebras

Let $L = L_{\bar{0}} \oplus L_{\bar{1}}$ be a restricted Lie superalgebra and let $M = M_{\bar{0}} \oplus M_{\bar{1}}$ be a restricted module.

For
$$n = 0$$
: $C_{CE}^0(L, M) := M$.

For n > 0: $C_{CE}^n(L, M)$ is the space of *n*-linear super anti-symmetric maps with values in M.

Chevalley-Eilenberg cohomology for Lie superalgebras

Let $L = L_{\bar{0}} \oplus L_{\bar{1}}$ be a restricted Lie superalgebra and let $M = M_{\bar{0}} \oplus M_{\bar{1}}$ be a restricted module.

For
$$n = 0$$
: $C_{CE}^0(L, M) := M$.

For n > 0: $C_{CE}^n(L, M)$ is the space of *n*-linear super anti-symmetric maps with values in M.

$$\begin{aligned} d^{0}_{CE}(m)(x) &= (-1)^{|m||x|} x \cdot m \quad \forall m \in M \text{ and } \forall x \in L; \\ d^{n}_{CE}(\varphi)(x_{1}, \dots, x_{n}) \\ &= \sum_{i < j} (-1)^{|x_{j}|(|x_{i+1}| + \dots + |x_{j-1}|) + j} \varphi(x_{1}, \dots, x_{i-1}, [x_{i}, x_{j}], x_{i+1}, \dots, \widetilde{x}_{j}, \dots, x_{n}) \\ &+ \sum_{j} (-1)^{|x_{j}|(|\varphi| + |x_{1}| + \dots + |x_{j-1}|) + j} x_{j} \cdot \varphi(x_{1}, \dots, \widetilde{x}_{j}, \dots, x_{n}) \\ &\text{ for any } \varphi \in C^{n-1}_{CE}(L; M) \text{ with } n > 0, \text{ and } x_{1}, \dots, x_{n} \in L. \end{aligned}$$

The spaces $C_{CE}^n(L; M)$ are \mathbb{Z}_2 -graded.

A (very) brief history of restricted cohomology

• 1955 (Hochschild): $H^n_*(L, M) := \operatorname{Ext}^n_{U(L)}(\mathbb{F}, M).$

Gerhard Hochschild

A (very) brief history of restricted cohomology

• 1955 (Hochschild): $H^n_*(L, M) := \operatorname{Ext}^n_{U(L)}(\mathbb{F}, M).$

Gerhard Hochschild

• 2000 (Evans-Fuchs): explicit constructions of 2-cocycles and central extensions.

Tyler J. Evans

Dmitry B. Fuchs

A (very) brief history of restricted cohomology

• 1955 (Hochschild): $H^n_*(L, M) := \operatorname{Ext}^n_{U(L)}(\mathbb{F}, M).$

Gerhard Hochschild

• 2000 (Evans-Fuchs): explicit constructions of 2-cocycles and central extensions.

Tyler J. Evans

Dmitry B. Fuchs

• 2020 (Yuan-Chen-Cao): attempt to generalize to the superalgebras case.

Let $L = L_{\bar{0}} \oplus L_{\bar{1}}$ be a restricted Lie superalgebra and let M be a L-supermodule. We set $C^0_*(L, M) = M$ and $C^1_*(L, M) = \text{Hom}(L, M)$.

Let $L = L_{\bar{0}} \oplus L_{\bar{1}}$ be a restricted Lie superalgebra and let M be a L-supermodule.

We set $C^{0}_{*}(L, M) = M$ and $C^{1}_{*}(L, M) = \text{Hom}(L, M)$.

Definition (Restricted 2-cochains)

Let $\varphi \in C^2_{CE}(L, M)$ (ordinary Chevalley-Eilenberg 2-cochain) and $\omega : L \longrightarrow M$. Then ω is φ -compatible if

Let $L = L_{\bar{0}} \oplus L_{\bar{1}}$ be a restricted Lie superalgebra and let M be a L-supermodule.

We set $C^{0}_{*}(L, M) = M$ and $C^{1}_{*}(L, M) = \text{Hom}(L, M)$.

Definition (Restricted 2-cochains)

Let $\varphi \in C^2_{CE}(L, M)$ (ordinary Chevalley-Eilenberg 2-cochain) and $\omega : L \longrightarrow M$. Then ω is φ -compatible if

•
$$\omega(\lambda x) = \lambda^{p} \omega(x), \ \lambda \in \mathbb{F}, \ x \in L_{\bar{0}};$$

• $\omega(x + y) =$
 $\omega(x) + \omega(y) + \sum_{\substack{x_{i} = x \text{ or } y \\ x_{1} = x, \ x_{2} = y}} \frac{1}{\pi(x)} \sum_{k=0}^{p-2} (-1)^{k} x_{p} ... x_{p-k+1} \varphi([[...[x_{1}, x_{2}], x_{3}]..., x_{p-k-1}], x_{p-k}),$

with $x, y \in L$, $\pi(x)$ the number of factors x_i equal to x.

Let $L = L_{\bar{0}} \oplus L_{\bar{1}}$ be a restricted Lie superalgebra and let M be a L-supermodule.

We set $C^{0}_{*}(L, M) = M$ and $C^{1}_{*}(L, M) = \text{Hom}(L, M)$.

Definition (Restricted 2-cochains)

Let $\varphi \in C^2_{CE}(L, M)$ (ordinary Chevalley-Eilenberg 2-cochain) and $\omega : L \longrightarrow M$. Then ω is φ -compatible if

with $x, y \in L$, $\pi(x)$ the number of factors x_i equal to x.

$$\mathcal{C}^2_*(L,M) = ig\{(arphi,\omega), \; arphi \in \mathcal{C}^2_{\mathit{CE}}(L,M), \; \omega \; \textit{is $arphi$-compatible}ig\}$$

 \sim We have a similar (although more complicated) definition for $C^3_*(L, M)$.

• A restricted 2-cocycle is an element $(\alpha, \beta) \in C^2_*(L, M)$ such that

• the map α is an ordinary Chevalley-Eilenberg 2-cocycle; • $\alpha(x, y^{[p]}) - \sum_{i+j=p-1} (-1)^i y^i \alpha([x, \underbrace{y, \cdots, y}_{j \text{ terms}}], y) + (-1)^{|x||\alpha|} x\beta(y) = 0,$ $\forall x \in L, y \in L_{\bar{0}}.$

The space of restricted 2-cocycle is denoted by $Z^2_*(L, M)$.

• A restricted 2-cocycle is an element $(\alpha, \beta) \in C^2_*(L, M)$ such that

• the map α is an ordinary Chevalley-Eilenberg 2-cocycle; • $\alpha(x, y^{[p]}) - \sum_{i+j=p-1} (-1)^i y^i \alpha([x, \underbrace{y, \cdots, y}_{j \text{ terms}}], y) + (-1)^{|x||\alpha|} x \beta(y) = 0,$ $\forall x \in L, y \in L_{\bar{0}}.$

The space of restricted 2-cocycle is denoted by $Z^2_*(L, M)$.

• A restricted 2-coboundary is an element $(\alpha, \beta) \in C^2_*(L, M)$ such that $\exists \varphi \in \operatorname{Hom}(L, M)$,

The space of restricted 2-coboundaries is denoted by $B^2_*(L, M)$.

The previous formulae define maps

$$0 \longrightarrow C^0_*(L,M) \stackrel{d^0_*}{\longrightarrow} C^1_*(L,M) \stackrel{d^1_*}{\longrightarrow} C^2_*(L,M) \stackrel{d^2_*}{\longrightarrow} C^3_*(L,M),$$

with $d_*^0 = d_{CE}^0$.

Theorem

We have $d_*^2 \circ d_*^1 = 0$. Therefore, the quotient space

$$H^2_*(L; M) = Z^2_*(L; M) / B^2_*(L; M)$$

is well defined.

Difficulty: the spaces $C^2_*(L; M)$ and $C^3_*(L; M)$ are **not** \mathbb{Z}_2 -graded.

Difficulty: the spaces $C^2_*(L; M)$ and $C^3_*(L; M)$ are **not** \mathbb{Z}_2 -graded.

Let L be a restricted Lie superalgebra and M a restricted L-module. We define a subspace $C^2_*(L; M)^+ \subset C^2_*(L; M)$ by

$$C^2_*(L;M)^+ := \Big\{ (\alpha,\beta) \in C^2_*(L;M), \ \mathsf{Im}(\beta) \subseteq M_{\bar{0}} \Big\}.$$

Difficulty: the spaces $C^2_*(L; M)$ and $C^3_*(L; M)$ are **not** \mathbb{Z}_2 -graded.

Let L be a restricted Lie superalgebra and M a restricted L-module. We define a subspace $C^2_*(L; M)^+ \subset C^2_*(L; M)$ by

$$C^2_*(L;M)^+ := \left\{ (lpha,eta) \in C^2_*(L;M), \ \mathsf{Im}(eta) \subseteq M_{\overline{0}}
ight\}.$$

Lemma

- (i) We have an inclusion $B^2_*(L; M)_{\bar{0}} \subset C^2_*(L; M)^+$.
- (ii) The space $C_*^2(L; M)^+$ is \mathbb{Z}_2 -graded and the degree of an homogeneous element $(\alpha, \beta) \in C_*^2(L; M)^+$ is given by $|(\alpha, \beta)| = |\alpha|$.

This Lemma allows us to consider the space $Z^2_*(L; M)^+ := \ker(d^2_{*|C^2_*(L;M)^+})$. Thus we can define

$$H^2_*(L;M)^+ := Z^2_*(L;M)^+ / B^2_*(L;M)_{\bar{0}}.$$

The space $H^2_*(L; M)^+$ is \mathbb{Z}_2 -graded.

Let $(L, [\cdot, \cdot], (\cdot)^{[p]})$ be a restricted Lie superalgebra, and M be a strongly abelian restricted Lie superalgebra (*i.e.*, $[m, n] = 0 \forall m, n \in M$, and $m^{[p]} = 0 \forall m \in M_{\bar{0}}$).

A **restricted extension** of L by M is a short exact sequence of restricted Lie superalgebras

$$0 \longrightarrow M \stackrel{\iota}{\longrightarrow} E \stackrel{\pi}{\longrightarrow} L \longrightarrow 0.$$

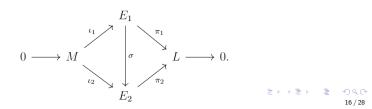
Let $(L, [\cdot, \cdot], (\cdot)^{[p]})$ be a restricted Lie superalgebra, and M be a strongly abelian restricted Lie superalgebra (*i.e.*, $[m, n] = 0 \ \forall m, n \in M$, and $m^{[p]} = 0 \ \forall m \in M_{\bar{0}}$).

A **restricted extension** of L by M is a short exact sequence of restricted Lie superalgebras

$$0 \longrightarrow M \stackrel{\iota}{\longrightarrow} E \stackrel{\pi}{\longrightarrow} L \longrightarrow 0.$$

In the case where $\iota(M) \subset \mathfrak{z}(E) := \{a \in E, [a, b] = 0 \ \forall b \in E\}$, *M* is a trivial *L*-module. These extensions are called **restricted central extensions**.

Two restricted central extensions of *L* by *M* are called **equivalent** if there is a restricted Lie superalgebras morphism $\sigma : E_1 \to E_2$ such that the following diagram commutes:



$$0 \longrightarrow M \stackrel{\iota}{\longrightarrow} E \stackrel{\pi}{\longrightarrow} L \longrightarrow 0.$$

Theorem

Let L be a restricted Lie superalgebra and M a strongly abelian restricted Lie superalgebra. Then, the equivalence classes of restricted central extensions of L by M are classified by $H^2_*(L; M)^+_{\overline{0}}$.

$$0 \longrightarrow M \stackrel{\iota}{\longrightarrow} E \stackrel{\pi}{\longrightarrow} L \longrightarrow 0.$$

Theorem

Let L be a restricted Lie superalgebra and M a strongly abelian restricted Lie superalgebra. Then, the equivalence classes of restricted central extensions of L by M are classified by $H^2_*(L; M)^+_{\overline{0}}$.

Structure maps on *E*. Let $(\varphi, \omega) \in Z^2_*(L; \mathbb{K})^+_{\bar{0}}$. The bracket and the *p*- map on *E* are given by

$$[x+m,y+n]_{\mathcal{E}} := [x,y] + \varphi(x,y), \ \forall x,y \in L, \ \forall m,n \in M;$$
(1)

$$(x+m)^{[p]_{\mathcal{E}}} := (x)^{[p]} + \omega(x), \ \forall x \in L_{\bar{0}}, \ \forall m \in M_{\bar{0}}.$$
(2)

A brief history of classification of restricted Lie algebras

 2016 (Schneider and Usefi): Classification of *p*-nilpotent restricted Lie algebras of dimension ≤ 4 (Forum Math.);

A brief history of classification of restricted Lie algebras

- 2016 (Schneider and Usefi): Classification of *p*-nilpotent restricted Lie algebras of dimension ≤ 4 (Forum Math.);
- 2016 (Darijani and Usefi): Classification of *p*-nilpotent restricted Lie algebras of dimension 5, *p* ≥ 3, *contains some mistakes* (J. Algebra);

A brief history of classification of restricted Lie algebras

- 2016 (Schneider and Usefi): Classification of *p*-nilpotent restricted Lie algebras of dimension ≤ 4 (Forum Math.);
- 2016 (Darijani and Usefi): Classification of *p*-nilpotent restricted Lie algebras of dimension 5, *p* ≥ 3, *contains some mistakes* (J. Algebra);
- 2023 (Maletesta and Siciliano): Classification of *p*-nilpotent restricted Lie algebras of dimension 5, p > 3, using another method (J. Algebra).

Hamid Usefi

Salvatore Siciliano

Dimension 3

•
$$\underline{sdim}(L) = (1|2)$$
: $L = \langle e_1 | e_2, e_3 \rangle$.
• $L_{1|2}^1 = \langle e_1 | e_2, e_3 \rangle$ (abelian):
• $e_1^{[p]} = 0$;
• $L_{1|2}^2 = \langle e_1 | e_2, e_3; [e_2, e_3] = e_1 \rangle$:
• $e_1^{[p]} = 0$;

•
$$\underline{\operatorname{sdim}(L) = (2|1)}$$
: $L = \langle e_1, e_2 | e_3 \rangle$.

5
$$L_{2|1}^{1} = \langle e_{1}, e_{2}|e_{3} \rangle$$
 (abelian):
6 $e_{1}^{[p]} = e_{2}^{[p]} = 0;$
7 $e_{1}^{[p]} = e_{2}, e_{2}^{[p]} = 0.$

$$\begin{array}{l} \bullet \quad \mathbf{L}_{1|2}^{3} = \langle e_{1}|e_{2}, e_{3}; [e_{1}, e_{2}] = e_{3} \rangle : \\ \bullet \quad e_{1}^{[p]} = 0. \\ \bullet \quad \mathbf{L}_{1|2}^{4} = \langle e_{1}|e_{2}, e_{3}; [e_{3}, e_{3}] = e_{1} \rangle : \\ \bullet \quad e_{1}^{[p]} = 0; \end{array}$$

•
$$\underline{sdim}(L) = (3|0)$$
: $L = \langle e_1, e_2, e_3 \rangle$, (see Schneider-Usefi).

•
$$L_{3|0}^{1} = \langle e_{1}, e_{2}, e_{3} \rangle$$
 (abelian):
• $e_{1}^{[p]} = e_{2}^{[p]} = e_{3}^{[p]} = 0;$
• $e_{1}^{[p]} = e_{2}, e_{2}^{[p]} = e_{3}^{[p]} = 0;$
• $e_{1}^{[p]} = e_{2}, e_{2}^{[p]} = e_{3}, e_{3}^{[p]} = 0.$

2
$$L^{2}_{3|0} = \langle e_{1}, e_{2}, e_{3}; [e_{1}, e_{2}] = e_{3} \rangle$$

a $e_{1}^{[p]} = e_{2}^{[p]} = e_{3}^{[p]} = 0;$
b $e_{1}^{[p]} = e_{3}, e_{2}^{[p]} = e_{3}^{[p]} = 0.$
b $e_{1}^{[p]} = e_{3}, e_{3}^{[p]} = e_{3}^{[p]} = 0.$

The classification method

For each 3-dimensional Lie superalgebra of the previous list, we compute the equivalence classes of non-trivial *ordinary* 2-cocycles under the action by automorphisms given by

$$(A\varphi)(x,y) = \varphi(A(x),A(y)), \ \forall x,y \in L$$
(3)

- We build the corresponding central extensions.
- Some of the superalgebras obtained are isomorphic. We detect and remove redundancies.
- Using Jacobson's Theorem, we check whether the *p*-maps on the even part are compatible with the odd part.

Let *L* be a restricted Lie superalgebra and *M* be a restricted *L*-module. Let $(\varphi, \omega) \in Z^2_*(L; M)$ and *A* be a restricted automorphism of *L*. An action is given by $A \cdot (\varphi, \omega) := (A\varphi, A\omega)$, with

$$\begin{cases} (A\varphi)(x,y) &= \varphi(A(x),A(y)), \ \forall x,y \in L\\ (A\omega)(x) &= \omega(A(x)), \ \forall x \in L_{\bar{0}}. \end{cases}$$
(4)

Let *L* be a restricted Lie superalgebra and *M* be a restricted *L*-module. Let $(\varphi, \omega) \in Z^2_*(L; M)$ and *A* be a restricted automorphism of *L*. An action is given by $A \cdot (\varphi, \omega) := (A\varphi, A\omega)$, with

$$\begin{cases} (A\varphi)(x,y) &= \varphi(A(x),A(y)), \ \forall x,y \in L\\ (A\omega)(x) &= \omega(A(x)), \ \forall x \in L_{\bar{0}}. \end{cases}$$
(4)

Proposition

- Let L be a p-nilpotent restricted Lie superalgebra of dimension n. Then, L is isomorphic to a central extension by a restricted 2-cocycle of a p-nilpotent restricted Lie superalgebra of dimension n 1.
- Equivalent 2-cocycles lead to isomorphic extensions.

Notation: Let $L = L_{\bar{0}} \oplus L_{\bar{1}} = \langle e_1, \dots, e_n | e_{n+1}, \dots, e_{n+m} \rangle$ be a restricted Lie superalgebra of superdimension sdim(L) = (n|m). A basis for (ordinary) 2-cocycles is then given by

$$\Delta_{i,j}: L \times L \longrightarrow \mathbb{K}, \qquad 1 \leq i \leq n+m, \ i \leq j \leq n+m,$$

where $\Delta_{i,j}(e_k, e_l) = \delta_{i,k}\delta_{j,l}$ and $\Delta_{i,j} = -(-1)^{|e_i||e_j|}\Delta_{j,i}$.

Notation: Let $L = L_{\bar{0}} \oplus L_{\bar{1}} = \langle e_1, \cdots, e_n | e_{n+1}, \cdots, e_{n+m} \rangle$ be a restricted Lie superalgebra of superdimension sdim(L) = (n|m). A basis for (ordinary) 2-cocycles is then given by

$$\Delta_{i,j}: L \times L \longrightarrow \mathbb{K}, \qquad 1 \leq i \leq n+m, \ i \leq j \leq n+m,$$

where $\Delta_{i,j}(e_k, e_l) = \delta_{i,k}\delta_{j,l}$ and $\Delta_{i,j} = -(-1)^{|e_i||e_j|}\Delta_{j,i}$.

Theorem

Suppose that L is a nilpotent Lie superalgebra of total dimension 3 with dim $(L_{\bar{1}}) \ge 1$ over an algebraically closed field of characteristic $p \ge 3$. The equivalence classes of (ordinary) non trivial homogeneous 2-cocycles on L are given by

$$\begin{split} \mathcal{L} &= \mathbf{L}_{0|3}^{1}: \ \Delta_{1,1}, \ \Delta_{1,2}, \ \Delta_{1,1} + \Delta_{2,3}; \\ \mathcal{L} &= \mathbf{L}_{1|2}^{1}: \ \Delta_{1,2}, \ \Delta_{2,3}, \ \Delta_{2,2} + \Delta_{2,3} + \Delta_{3,3}; \\ \mathcal{L} &= \mathbf{L}_{1|2}^{2}: \ \Delta_{2,2}, \ \Delta_{2,2} + \Delta_{3,3}; \\ \mathcal{L} &= \mathbf{L}_{1|2}^{3}: \ \Delta_{1,3}, \ \Delta_{2,2}; \\ \mathcal{L} &= \mathbf{L}_{1|2}^{4}: \ \Delta_{2,2}, \ \Delta_{2,3}, \ \Delta_{2,2} + \Delta_{2,3}. \\ \mathcal{L} &= \mathbf{L}_{2|1}^{1}: \ \Delta_{1,3}, \ \Delta_{1,2}, \ \Delta_{3,3}, \ \Delta_{1,2} + \Delta_{3,3}; \\ \mathcal{L} &= \mathbf{L}_{2|1}^{2}: \ \Delta_{1,3}. \end{split}$$

Dimension 4: the classification. Building the extensions.

With the list of 2-cocycles, we can extend the Lie brackets using

$$[x, y]_{\text{new}} = [x, y]_{\text{old}} + \Delta(x, y)X.$$
(5)

Dimension 4: the classification. Building the extensions.

With the list of 2-cocycles, we can extend the Lie brackets using

$$[x, y]_{\text{new}} = [x, y]_{\text{old}} + \Delta(x, y)X.$$
(5)

Example. Consider $L^3_{1|2} = \langle e_1 | e_2, e_3; [e_1, e_2] = e_3 \rangle$. The 2-cocycles are $\Delta_{1,3}$ and $\Delta_{2,2}$. We obtain four superalgebras of dimension 4.

Name	sdim	Cocycle	Added element	Bracket
$L^{g}_{2 2}$	(2 2)	0	X even	$[e_1,e_2]=e_3$
L ^d _{1 3}	(1 3)	0	X odd	$[e_1,e_2]=e_3$
L ^e _{1 3}	(1 3)	$\Delta_{1,3}$	X odd	$[e_1, e_2] = e_3, \ [e_1, e_3] = X$
L ^h _{2 2}	(2 2)	$\Delta_{2,2}$	X even	$[e_1, e_2] = e_3, \ [e_2, e_2] = X$

Lie superalgebras obtained by central extensions of $L_{1|2}^3$.

Dimension 4: the classification. Detecting isomorphisms.

It is possible that two superalgebras obtained as central extensions by non-equivalent cocycles are isomorphic. We need to detect and remove redundancies.

L	[<i>L</i> , <i>L</i>]	$sdim(\mathfrak{z}(L))$	$sdim\left(H^1_{CE}(L;\mathbb{K})\right)$	$sdim\left(H^2_{CE}(L;\mathbb{K})\right)$	$sdim\left(H^3_{CE}(L;\mathbb{K})\right)$
$L_{1 3}^{a}$	0	1 3	1 3	6 3	7 9
L ^b _{1 3}	$\langle X \rangle$	0 2	1 2	3 2	3 4 (3 5 if p = 3)
L ^c _{1 3}	$\langle e_1 \rangle$	1 1	0 3	5 0	0 7
$L_{1 3}^{e}$	$\langle e_3, X \rangle$	0 1	1 1	2 1	2 2 (2 4 if p = 3)
$L_{1 3}^{f}$	$\langle e_1 \rangle$	1 2	0 3	5 0	0 7
$L_{1 3}^j$	$\langle X \rangle$	1 0	0 3	5 0	0 7

Invariants for Lie superalgebras of sdim = (1|3).

Dimension 4: the classification. Lie superalgebras.

Theorem

The classification of 4-dimensional nilpotent Lie superalgebras over an algebraically closed field of characteristic different from 2 is given by:

$$\begin{split} & \underline{sdim}(L) = (0|4): \ L = \langle 0|x_1, x_2, x_3, x_4 \rangle \\ & \overline{L}_{0|4}^1: \ [\cdot, \cdot] = 0. \\ & \underline{sdim}(L) = (1|3): \ L = \langle x_1|x_2, x_3, x_4 \rangle \\ & \overline{L}_{1|3}^1 = (\mathbf{L}_{1|3}^a): \ abelian; \\ & \overline{L}_{1|3}^2 = (\mathbf{L}_{1|3}^b): \ [x_1, x_3] = x_4; \\ & \overline{L}_{1|3}^3 = (\mathbf{L}_{1|3}^c): \ [x_2, x_3] = x_1; \\ & \overline{L}_{1|3}^4 = (\mathbf{L}_{1|3}^c): \ [x_1, x_2] = x_3, \ [x_1, x_3] = x_4; \\ & \overline{L}_{1|3}^5 = (\mathbf{L}_{1|3}^c): \ [x_2, x_2] = x_1, \ [x_3, x_4] = x_1. \\ & \underline{sdim}(L) = (2|2): \ L = \langle x_1, x_2|x_3, x_4 \rangle \\ & \overline{L}_{2|2}^1 = (\mathbf{L}_{2|2}^b): \ [x_3, x_3] = x_2; \\ & \overline{L}_{2|2}^3 = (\mathbf{L}_{2|2}^b): \ [x_3, x_3] = x_2, \ [x_3, x_4] = x_1; \\ & \overline{L}_{2|2}^5 = (\mathbf{L}_{2|2}^b): \ [x_3, x_3] = x_4; \\ & \overline{L}_{2|2}^5 = (\mathbf{L}_{2|2}^b): \ [x_1, x_3] = x_4; \\ & \overline{L}_{2|2}^5 = (\mathbf{L}_{2|2}^b): \ [x_1, x_3] = x_4; \\ & \overline{L}_{2|2}^5 = (\mathbf{L}_{2|2}^b): \ [x_1, x_3] = x_4; \\ & \overline{L}_{2|2}^5 = (\mathbf{L}_{2|2}^b): \ [x_1, x_3] = x_4; \ [x_3, x_3] = x_2. \\ & \overline{L}_{2|2}^7 = (\mathbf{L}_{2|2}^b): \ [x_4, x_4] = x_1. \end{split}$$

$$\begin{split} & \underline{sdim}(L) = (3|1); \ L = \langle x_1, x_2, x_3 | x_4 \rangle \\ & \overline{L_{3|1}^1} \ (= L_{3|1}^3): abelian; \\ & \overline{L_{3|1}^2} \ (= L_{3|1}^b): \ [x_1, x_2] = x_3; \\ & \overline{L_{3|1}^3} \ (= L_{3|1}^c): \ [x_2, x_2] = x_3; \\ & \overline{L_{3|1}^4} \ (= L_{3|1}^d): \ [x_1, x_2] = [x_3, x_4] = x_3 \\ & \underline{sdim}(L) = (4|0); \ L = \langle x_1, x_2, x_3, x_4|0 \rangle \\ \hline & \overline{L_{4|0}^1}: \ abelian; \\ & \overline{L_{4|0}^2}: \ [x_1, x_2] = x_3; \\ & \overline{L_{4|0}^3}: \ [x_1, x_2] = x_3; \\ & \overline{L_{4|0}^3}: \ [x_1, x_2] = x_3; \\ & \overline{L_{4|0}^3}: \ [x_1, x_2] = x_3, \ [x_1, x_3] = x_4. \end{split}$$

• Suppose that $L = L_{\bar{0}} \oplus L_{\bar{1}}$ is a *p*-nilpotent restricted Lie superalgebra. Then $L_{\bar{0}}$ is a *p*-nilpotent restricted Lie algebra with a *p*-map $(\cdot)^{[p]}$.

- Suppose that $L = L_{\bar{0}} \oplus L_{\bar{1}}$ is a *p*-nilpotent restricted Lie superalgebra. Then $L_{\bar{0}}$ is a *p*-nilpotent restricted Lie algebra with a *p*-map $(\cdot)^{[p]}$.
- The classification of 4-dimensional restricted Lie algebras has been achieved by Schneider-Usefi.

- Suppose that $L = L_{\bar{0}} \oplus L_{\bar{1}}$ is a *p*-nilpotent restricted Lie superalgebra. Then $L_{\bar{0}}$ is a *p*-nilpotent restricted Lie algebra with a *p*-map $(\cdot)^{[p]}$.
- The classification of 4-dimensional restricted Lie algebras has been achieved by Schneider-Usefi.
- We only have to check whether these *p*-maps satisfy

$$\operatorname{ad}_{e_i}^p(f_j) = \operatorname{ad}_{e_i^{[p]}}(f_j),$$

 $\forall e_i$ basis elements of $L_{\overline{0}}$, $\forall f_i$ basis elements of $L_{\overline{1}}$.

Theorem

The p-nilpotent structures on nilpotent Lie superalgebras of total dimension 4 with dim $(L_{\bar{1}}) > 0$ are given by:

• sdim(L) = (0|4): none. • $sdim(L) = (1|3): x_1^{[p]} = 0.$ • sdim(L) = (2|2): $x_1^{[p]_1} = x_2^{[p]_1} = 0;$ $x_1^{[p]_2} = x_2, \ x_2^{[p]_2} = 0.$ • sdim(L) = (3|1): Case L₀ abelian: * $x_1^{[p]_1} = x_2^{[p]_1} = x_3^{[p]_1} = 0;$ * $x_1^{[p]_2} = x_2, \ x_2^{[p]_2} = x_3^{[p]_2} = 0.$ * $x_1^{[p]_3} = x_2, \ x_2^{[p]_3} = x_3, \ x_2^{[p]_3} = 0.$ • Case $L_{\bar{0}} \cong L^2_{3|0} = \langle x_1, x_2, x_3; [x_1, x_2] = x_3 \rangle$: * $x_1^{[p]_4} = x_2^{[p]_4} = x_2^{[p]_4} = 0;$ * $x_1^{[p]_5} = x_3, \ x_2^{[p]_5} = x_2^{[p]_5} = 0.$

Thank you for your attention!