Restricted Lie algebras in characteristic p = 2

Quentin Ehret

Post-Doc Day, April 2024

Joint work with Abdenacer Makhlouf

جامعـة نيويورك أبـوظـي

Non-associative algebras

A vector space (A, +) over a field \mathbb{K} is called **algebra** if it is endowed with a multiplicative law $A \times A \longrightarrow A$.

Sophus Lie (1842-1899)

- associative : $a(bc) = (ab)c, \forall a, b, c \in A$;
- commutative : ab = ba, $\forall a, b \in A$;
- Lie algebra :

 - ② $[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0, \forall a, b, c \in A$ (Jacobi).

Non-associative algebras

A vector space (A, +) over a field \mathbb{K} is called **algebra** if it is endowed with a multiplicative law $A \times A \longrightarrow A$.

Sophus Lie (1842-1899)

- associative : $a(bc) = (ab)c, \forall a, b, c \in A$;
- commutative : ab = ba, $\forall a, b \in A$;
- Lie algebra :
 - **1** $[a, b] = -[b, a], \forall a, b \in A;$
 - ② $[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0, \forall a, b, c \in A$ (Jacobi).

Example : Let A be an associative algebra and [a, b] := ab - ba, $a, b \in A$.

Let \mathbb{K} a field of characteristic $p \geq 2$ and A an associative \mathbb{K} -algebra. With the commutator, it's a Lie algebra. The adjoint representation is then given by

$$\mathsf{ad}_{\mathsf{x}}(y) = xy - yx.$$

Let \mathbb{K} a field of characteristic $p \geq 2$ and A an associative \mathbb{K} -algebra. With the commutator, it's a Lie algebra. The adjoint representation is then given by

$$ad_x(y) = xy - yx$$
.

Let m > 0. Then

$$\operatorname{ad}_{x}^{m}(y) = \sum_{j=0}^{m} \binom{m}{j} (-1)^{m-j} x^{j} y x^{m-j}.$$

Let \mathbb{K} a field of characteristic $p \geq 2$ and A an associative \mathbb{K} -algebra. With the commutator, it's a Lie algebra. The adjoint representation is then given by

$$ad_x(y) = xy - yx$$
.

Let m > 0. Then

$$\operatorname{ad}_{x}^{m}(y) = \sum_{j=0}^{m} \binom{m}{j} (-1)^{m-j} x^{j} y x^{m-j}.$$

Then, if m = p, we obtain

$$\operatorname{\mathsf{ad}}_{\scriptscriptstyle X}^{p}(y) = x^{p}y - yx^{p} = \operatorname{\mathsf{ad}}_{x^{p}}(y).$$

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map $(\cdot)^{[p]}: L \longrightarrow L$ satisfying for all $x, y \in L$ and for all $\lambda \in \mathbb{K}$:

Nathan Jacobson (1910-1999)

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map $(\cdot)^{[p]}: L \longrightarrow L$ satisfying for all $x, y \in L$ and for all $\lambda \in \mathbb{K}$:

$$[x, y^{[p]}] = [[\cdots [x, y], y], \cdots, y];$$

Nathan Jacobson (1910-1999)

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map $(\cdot)^{[p]}: L \longrightarrow L$ satisfying for all $x, y \in L$ and for all $\lambda \in \mathbb{K}$:

- $[x, y^{[p]}] = [[\cdots [x, y], y], \cdots, y];$
- $(x+y)^{[p]} = x^{[p]} + y^{[p]} + \sum_{i=1}^{p-1} s_i(x,y),$

Nathan Jacobson (1910-1999)

with $is_i(x,y)$ the coefficient of Z^{i-1} in $ad_{Zx+y}^{p-1}(x)$. Such a map $(\cdot)^{[p]}:L\longrightarrow L$ is called p-map.

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map $(\cdot)^{[p]}: L \longrightarrow L$ satisfying for all $x, y \in L$ and for all $\lambda \in \mathbb{K}$:

- $[x, y^{[p]}] = [[\cdots [x, y], y], \cdots, y];$
- $(x+y)^{[\rho]} = x^{[\rho]} + y^{[\rho]} + \sum_{i=1}^{\rho-1} s_i(x,y),$

Nathan Jacobson (1910-1999)

with $is_i(x,y)$ the coefficient of Z^{i-1} in $ad_{Zx+v}^{p-1}(x)$. Such a map $(\cdot)^{[p]}:L\longrightarrow L$ is called p-map.

Example: any associative algebra A with [a, b] = ab - ba and $a^{[p]} = a^p$, $\forall a, b \in A$.

Definition

A Lie algebra morphism $f: (L, [\cdot, \cdot], (\cdot)^{[p]}) \to (L', [\cdot, \cdot]', (\cdot)^{[p]'})$ is called **restricted** if

$$f(x^{[p]}) = f(x)^{[p]'}, \ \forall x \in L.$$

A L-module M is called **restricted** if

$$x^{[p]} \cdot m = \left(\overbrace{x \cdot (x \cdots (x \cdot m) \cdots)} \right), \ \forall x \in L, \ \forall m \in M.$$

From now on, all the algebras will be considered over a field \mathbb{F} of characteristic p=2.

Definition

A restricted Lie algebra in characteristic 2 is a Lie algebra L equipped with a map $(\cdot)^{[2]}:L\longrightarrow L$ such that, for all $x,y\in L$ and all $\lambda\in F$,

- $(\lambda x)^{[2]} = \lambda^2 x^{[2]};$
- $(x+y)^{[2]} = x^{[2]} + y^{[2]} + [x,y].$

Proposition

Let L be a restricted Lie algebra in characteristic p=2. Let $x_1, \dots, x_n \in L$. Then we have the formula

$$\left(\sum_{i=1}^{n} x_i\right)^{[2]} = \sum_{i=1}^{n} x_i^{[2]} + \sum_{1 \le i < j \le n} [x_i, x_j].$$

Consider the formal space $L[[t]] := \left\{ \sum_i t^i x_i, \; x_i \in L \right\}$.

Proposition

Let L be a Lie algebra. Then L[[t]] is a restricted Lie algebra with the extended bracket

$$\left[\sum_{i\geq 0} t^i x_i, \sum_{j\geq 0} t^j y_j\right] = \sum_{i,j} t^{i+j} [x_i, y_j], \quad \forall x_i, y_j \in L.$$
 (1)

and the 2-mapping $(\cdot)^{[2]_t}$ given by

$$\left(\sum_{i>0} t^i x_i\right)^{[2]t} := \sum_{i>0} t^{2i} x_i^{[2]} + \sum_{i,j} t^{i+j} [x_i, x_j]. \tag{2}$$

Consider the formal space $L[[t]] := \left\{ \sum t^i x_i, \; x_i \in L \right\}$.

Proposition

Let L be a Lie algebra. Then L[[t]] is a restricted Lie algebra with the extended bracket

$$\left[\sum_{i\geq 0} t^i x_i, \sum_{j\geq 0} t^j y_j\right] = \sum_{i,j} t^{i+j} [x_i, y_j], \quad \forall x_i, y_j \in L.$$
 (1)

and the 2-mapping $(\cdot)^{[2]_t}$ given by

$$\left(\sum_{i\geq 0} t^i x_i\right)^{[2]t} := \sum_{i\geq 0} t^{2i} x_i^{[2]} + \sum_{i,j} t^{i+j} [x_i, x_j]. \tag{2}$$

Remark. By expanding the formula (2) and by arranging the terms by monomials of the same degree, we obtain

$$\left(\sum_{n\geq 0} t^n x_n\right)^{[2]_t} = \sum_{n\geq 0} t^n \left((\overline{n+1}) x_{\lfloor \frac{n}{2} \rfloor}^{[2]} + \sum_{i < j} [x_i, x_j] \right), \tag{3}$$

where $\lfloor \cdot \rfloor$ denotes the floor function.

Chevalley-Eilenberg cohomology

Let L be an ordinary Lie algebra and M be an ordinary L-module. We set

$$C_{\mathsf{CE}}^m(L,M) = \mathsf{Hom}_{\mathbb{F}}(\Lambda^m L,M) \ \text{ for } m \geq 1,$$

 $C_{\mathsf{CE}}^0(L,M) \cong M.$

Chevalley-Eilenberg cohomology

Let L be an ordinary Lie algebra and M be an ordinary L-module. We set

$$C^m_{\mathsf{CE}}(L,M) = \mathsf{Hom}_{\mathbb{F}}(\Lambda^m L,M) \ \text{ for } m \geq 1,$$

 $C^0_{\mathsf{CE}}(L,M) \cong M.$

The differential maps $d_{\sf CE}^m:C_{\sf CE}^m(L,M)\longrightarrow C_{\sf CE}^{m+1}(L,M)$ are given by

$$\begin{split} d_{\mathsf{CE}}^{m}(\varphi)(x_{1},\cdots,x_{m+1}) &= \sum_{1 \leq i < j \leq m+1} (-1)^{i+j-1} \varphi\big([x_{i},x_{j}],x_{1},\cdots\hat{x_{i}},\cdots,\hat{x_{j}},\cdots,x_{m+1}\big) \\ &+ \sum_{i=1}^{m+1} (-1)^{i} x_{i} \varphi\big(x_{1},\cdots,\hat{x_{i}},\cdots,x_{m+1}\big), \end{split}$$

where $\hat{x_i}$ means that the element is omitted.

Chevalley-Eilenberg cohomology

Let L be an ordinary Lie algebra and M be an ordinary L-module. We set

$$C^m_{\mathsf{CE}}(L,M) = \mathsf{Hom}_{\mathbb{F}}(\Lambda^m L,M) \ \text{ for } m \geq 1,$$

 $C^0_{\mathsf{CE}}(L,M) \cong M.$

The differential maps $d_{\sf CE}^m:C_{\sf CE}^m(L,M)\longrightarrow C_{\sf CE}^{m+1}(L,M)$ are given by

$$\begin{split} d_{\mathsf{CE}}^{m}(\varphi)(x_{1},\cdots,x_{m+1}) &= \sum_{1 \leq i < j \leq m+1} (-1)^{i+j-1} \varphi\big([x_{i},x_{j}],x_{1},\cdots\hat{x_{i}},\cdots,\hat{x_{j}},\cdots,x_{m+1}\big) \\ &+ \sum_{i=1}^{m+1} (-1)^{i} x_{i} \varphi\big(x_{1},\cdots,\hat{x_{i}},\cdots,x_{m+1}\big), \end{split}$$

where $\hat{x_i}$ means that the element is omitted.

Proposition

We have
$$d_{CF}^{m+1} \circ d_{CF}^{m} = 0$$
.

Let L be an restricted Lie algebra and M be a restricted L-module. A pair (φ, ω) with $\varphi: \wedge^n L \to M$ and $\omega: L^{n-1} \to M$ is a n-cochain if

Let L be an restricted Lie algebra and M be a restricted L-module. A pair (φ, ω) with $\varphi: \wedge^n L \to M$ and $\omega: L^{n-1} \to M$ is a n-cochain if

- ② ω is multilinear in z_2, \dots, z_{n-1} ;

Let L be an restricted Lie algebra and M be a restricted L-module. A pair (φ, ω) with $\varphi : \wedge^n L \to M$ and $\omega : L^{n-1} \to M$ is a n-cochain if

- ω is multilinear in z_2, \dots, z_{n-1} ;
- $\omega(x+y,z_2,\cdots,z_{n-1}) = \omega(x,z_2,\cdots,z_{n-1}) + \omega(y,z_2,\cdots,z_{n-1}) + \varphi(x,y,z_2,\cdots,z_{n-1}).$

We denote the spaces thus obtained by $C_{*2}^n(L, M)$.

We build the differential maps $d_{*_2}^n:C_{*_2}^n(L,M)\longrightarrow C_{*_2}^{n+1}(L,M).$

We build the differential maps $d_{*_2}^n:C_{*_2}^n(L,M)\longrightarrow C_{*_2}^{n+1}(L,M)$. Let $d_{*_2}^n(\varphi,\omega)=(d_{CE}^n(\varphi),\delta^n(\omega))$, with

$$\delta^{n}\omega(x, z_{2}, \dots, z_{n}) = x \cdot \varphi(x, z_{2}, \dots, z_{n})$$

$$+ \sum_{i=2}^{n} z_{i} \cdot \omega(x, z_{2}, \dots, \hat{z}_{i}, \dots, z_{n})$$

$$+ \varphi(x^{[2]}, z_{2}, \dots, z_{n})$$

$$+ \sum_{i=2}^{n} \varphi([x, z_{i}], x, z_{2}, \dots, \hat{z}_{i}, \dots, z_{n})$$

$$+ \sum_{1 \leq i < j \leq n} \omega(x, [z_{i}, z_{j}], z_{2}, \dots, \hat{z}_{i}, \dots, \hat{z}_{i}, \dots, z_{n}).$$

We build the differential maps $d_{*_2}^n: C_{*_2}^n(L, M) \longrightarrow C_{*_2}^{n+1}(L, M)$. Let $d_{*_2}^n(\varphi, \omega) = (d_{CE}^n(\varphi), \delta^n(\omega))$, with

$$\delta^{n}\omega(x, z_{2}, \dots, z_{n}) = x \cdot \varphi(x, z_{2}, \dots, z_{n})$$

$$+ \sum_{i=2}^{n} z_{i} \cdot \omega(x, z_{2}, \dots, \hat{z}_{i}, \dots, z_{n})$$

$$+ \varphi(x^{[2]}, z_{2}, \dots, z_{n})$$

$$+ \sum_{i=2}^{n} \varphi([x, z_{i}], x, z_{2}, \dots, \hat{z}_{i}, \dots, z_{n})$$

$$+ \sum_{1 \leq i < j \leq n} \omega(x, [z_{i}, z_{j}], z_{2}, \dots, \hat{z}_{i}, \dots, \hat{z}_{i}, \dots, z_{n}).$$

$$(\cdots) \longrightarrow C_{*_2}^{n-1}(L,M) \xrightarrow{d_{*_2}^{n-1}} C_{*_2}^n(L,M) \xrightarrow{d_{*_2}^n} C_{*_2}^{n+1}(L,M) \xrightarrow{d_{*_2}^{n+1}} (\cdots)$$

Proposition

Proposition

- Let $(\varphi, \omega) \in C^n_{*_2}(L, M)$. Then $(d^n_{CE}(\varphi), \delta^n(\omega)) \in C^{n+1}_{*_2}(L, M)$;
- **2** We have $\delta^{n+1} \circ \delta^n = 0$.

We define:

$$Z_{*_{2}}^{n}(L,M) = \left\{ (\varphi,\omega) \in C_{*_{2}}^{n}(L,M), \quad d_{\mathsf{CE}}^{n}(\varphi) = 0, \ \delta^{n}(\omega) = 0 \right\}.$$

$$B_{*_{2}}^{n}(L,M) = \left\{ (\varphi,\omega) \in C_{*_{2}}^{n}(L,M), \quad (\varphi,\omega) \in \mathsf{im}(d_{\mathsf{CE}}^{n-1},\delta^{n-1}) \right\}.$$

$$H_{*_{2}}^{n}(L,M) = Z_{*_{2}}^{n}(L,M)/B_{*_{2}}^{n}(L,M).$$

Let $(L, [\cdot, \cdot], (\cdot)^{[2]})$ be a restricted Lie algebra.

Definition

A formal deformation of $(L, [\cdot, \cdot], (\cdot)^{[2]})$ is a restricted structure on the formal space L[[t]], given for $x, y \in L$, by

$$\textit{m}_t: (x,y) \longmapsto [x,y] + \sum_{i \geq 1} t^i \textit{m}_i(x,y), \ \omega_t: x \longmapsto x^{[2]} + \sum_{j \geq 1} t^j \, \omega_j(x),$$

with $m_i : \wedge^2(L, L) \to L$ and $\omega_i : L \mapsto L$. Moreover, the two following conditions must be satisfied, for $x, y, z \in L$:

$$m_t((x, m_t(y, z)) + m_t((y, m_t(z, x)) + m_t((z, m_t(x, y))) = 0;$$
 (4)

$$m_t(x,\omega_t(y)) = m_t(m_t(\cdots m_t(x,y),y),\cdots,y);$$
 (5)

Let $(L, [\cdot, \cdot], (\cdot)^{[2]})$ be a restricted Lie algebra.

Definition

A formal deformation of $(L, [\cdot, \cdot], (\cdot)^{[2]})$ is a restricted structure on the formal space L[[t]], given for $x, y \in L$, by

$$m_t: (x,y) \longmapsto [x,y] + \sum_{i>1} t^i m_i(x,y), \quad \omega_t: x \longmapsto x^{[2]} + \sum_{i>1} t^i \omega_i(x),$$

with $m_i: \wedge^2(L,L) \to L$ and $\omega_i: L \mapsto L$. Moreover, the two following conditions must be satisfied, for $x, y, z \in L$:

$$m_t((x, m_t(y, z)) + m_t((y, m_t(z, x)) + m_t((z, m_t(x, y))) = 0;$$

$$(4)$$

$$m_t(x,\omega_t(y)) = m_t(m_t(\cdots m_t(x,y),y),\cdots,y);$$
 (5)

A formal deformation is of order N > 0 if $m_t = \sum_{i>0}^{N} t^i m_i$, $\omega_t = \sum_{i>0}^{N} t^j \omega_j$.

Let $(L, [\cdot, \cdot], (\cdot)^{[2]})$ be a restricted Lie algebra and $(L[[t]], m_t, \omega_t)$ a formal deformation.

Proposition

- For all $i \geq 0$, we have $(m_i, \omega_i) \in C^2_{*2}(L, L)$.
- The pair (m_1, ω_1) is a 2-cocycle, that is, $d_{CE}^2(m_1) = 0$, $\delta^n(\omega_1) = 0$.

Let $(L, [\cdot, \cdot], (\cdot)^{[2]})$ be a restricted Lie algebra and $(L[[t]], m_t, \omega_t)$ a formal deformation.

Proposition

- For all $i \geq 0$, we have $(m_i, \omega_i) \in C^2_{*2}(L, L)$.
- The pair (m_1, ω_1) is a 2-cocycle, that is, $d_{CE}^2(m_1) = 0$, $\delta^n(\omega_1) = 0$.

For N > 0, we define for all $x, y, z \in L$ the quantities

$$\operatorname{obs}_{N+1}^{(1)}(x,y,z) = \sum_{i=1}^{N} \left(m_i(x, m_{N+1-i}(y,z)) + m_i(y, m_{N+1-i}(z,x)) + m_i(z, m_{N+1-i}(x,y)) \right);$$

$$\mathsf{obs}_{N+1}^{(2)}(x,y) = \sum_{i=1}^N \Big(m_i(y,\omega_{N+1-i}(x)) + m_i(m_{N+1-i}(y,x),x) \Big).$$

Let $(L, [\cdot, \cdot], (\cdot)^{[2]})$ be a restricted Lie algebra and $(L[[t]], m_t, \omega_t)$ a formal deformation.

Proposition

- For all $i \geq 0$, we have $(m_i, \omega_i) \in C^2_{*2}(L, L)$.
- The pair (m_1, ω_1) is a 2-cocycle, that is, $d_{CE}^2(m_1) = 0$, $\delta^n(\omega_1) = 0$.

For N > 0, we define for all $x, y, z \in L$ the quantities

$$obs_{N+1}^{(1)}(x, y, z) = \sum_{i=1}^{N} \left(m_i(x, m_{N+1-i}(y, z)) + m_i(y, m_{N+1-i}(z, x)) + m_i(z, m_{N+1-i}(x, y)) \right);$$

$$obs_{N+1}^{(2)}(x, y) = \sum_{i=1}^{N} \left(m_i(y, \omega_{N+1-i}(x)) + m_i(m_{N+1-i}(y, x), x) \right).$$

- We have $(obs_{N+1}^{(1)}, obs_{N+1}^{(2)}) \in C_{*_2}^3(L, L)$.
- ullet A deformation of order N extends to a deformation of order N $+\,1$ if and only if

$$ig(obs_{N+1}^{(1)},obs_{N+1}^{(2)}ig)\in B^3_{*_2}(L,L).$$

Definition

Two formal deformations $\left(L[[t]], m_t, \omega_t\right)$ and $\left(L[[t]], m_t', \omega_t'\right)$ of a restricted Lie algebra are called equivalent if there is a formal automorphism $\phi_t = id + \sum_{i>0} t^i \phi_i$ such that, for all $x, y \in L$,

$$\phi_t(m_t(x,y)) = m(\phi_t(x),\phi_t(y));$$

$$\phi_t(\omega_t(x)) = \omega(\phi_t(x)).$$

Definition

Two formal deformations $\left(L[[t]], m_t, \omega_t\right)$ and $\left(L[[t]], m_t', \omega_t'\right)$ of a restricted Lie algebra are called equivalent if there is a formal automorphism $\phi_t = id + \sum_{i>0} t^i \phi_i$ such that, for all $x, y \in L$,

$$\phi_t(m_t(x,y)) = m(\phi_t(x),\phi_t(y));$$

$$\phi_t(\omega_t(x)) = \omega(\phi_t(x)).$$

Proposition

Let $(L, [\cdot, \cdot], (\cdot)^{[2]})$ be a restricted Lie algebra and $(L[[t]], m_t, \omega_t)$, $(L[[t]], m_t', \omega_t')$ equivalent formal deformations. Then, (m_1, ω_1) and (m_1', ω_1') are in the same cohomological class.

Definition (Heisenberg algebra)

The three dimensional Heisenberg algebra $\mathcal H$ is spanned by elements x,y,z and equipped with the Lie bracket $[\cdot,\cdot]$ defined by

$$[x,y] = z, [x,z] = [y,z] = 0.$$

Werner Heisenberg (1901-1976)

Definition (Heisenberg algebra)

The three dimensional Heisenberg algebra $\mathcal H$ is spanned by elements x,y,z and equipped with the Lie bracket $[\cdot,\cdot]$ defined by

$$[x, y] = z, [x, z] = [y, z] = 0.$$

Werner Heisenberg (1901-1976)

Proposition

There are up to isomorphism two restricted Heisenberg algebras in characteristic p=2, given by

- ① $x^{[2]} = y^{[2]} = z^{[2]} = 0$, denoted by $(\mathcal{H}, 0)$;
- ② $x^{[2]} = y^{[2]} = 0$, $z^{[2]} = z$, denoted by (\mathcal{H}, z^*) ;

Definition (Heisenberg algebra)

The three dimensional Heisenberg algebra $\mathcal H$ is spanned by elements x,y,z and equipped with the Lie bracket $[\cdot,\cdot]$ defined by

$$[x,y] = z, \ [x,z] = [y,z] = 0.$$

Werner Heisenberg (1901-1976)

Proposition

There are up to isomorphism two restricted Heisenberg algebras in characteristic p=2, given by

- ① $x^{[2]} = y^{[2]} = z^{[2]} = 0$, denoted by $(\mathcal{H}, 0)$;
- ② $x^{[2]} = y^{[2]} = 0$, $z^{[2]} = z$, denoted by (\mathcal{H}, z^*) ;

Let $(\cdot)^{[2]}$ a 2-map on \mathcal{H} . Then,

$$(x+y)^{[2]} = x^{[2]} + y^{[2]} + z; (x+z)^{[2]} = x^{[2]} + z^{[2]}; (y+z)^{[2]} = y^{[2]} + z^{[2]}.$$

Definition (Heisenberg algebra)

The three dimensional Heisenberg algebra $\mathcal H$ is spanned by elements x,y,z and equipped with the Lie bracket $[\cdot,\cdot]$ defined by

$$[x, y] = z, [x, z] = [y, z] = 0.$$

Werner Heisenberg (1901-1976)

Proposition

There are up to isomorphism two restricted Heisenberg algebras in characteristic p = 2, given by

- ① $x^{[2]} = y^{[2]} = z^{[2]} = 0$, denoted by $(\mathcal{H}, 0)$;
- ② $x^{[2]} = y^{[2]} = 0$, $z^{[2]} = z$, denoted by (\mathcal{H}, z^*) ;

Let $(\cdot)^{[2]}$ a 2-map on \mathcal{H} . Then,

$$(x+y)^{[2]} = x^{[2]} + y^{[2]} + z$$
; $(x+z)^{[2]} = x^{[2]} + z^{[2]}$; $(y+z)^{[2]} = y^{[2]} + z^{[2]}$.

Let $u = ax + by + cz \in \mathcal{H}$, $a, b, c \in \mathbb{F}$. Then $u^{[2]} = a^2x^{[2]} + b^2y^{[2]} + c^2z^{[2]} + abz$.

Restricted cohomology with adjoint coefficients

Theorem (Second cohomology group with adjoint coefficients, p = 2)

We have $\dim_{\mathbb{F}} \left(H^2_{*_2}(\mathcal{H}, 0) \right) = 3$ and $\dim_{\mathbb{F}} \left(H^2_{*_2}(\mathcal{H}, z^*) \right) = 2$.

• A basis for $H^2_{*2}(\mathcal{H},0)$ is given by $\{(\varphi_1,\omega_1),(\varphi_2,\omega_2),(0,\omega_3)\}$, with

$$\varphi_1(y,z) = z; \ \varphi_2(x,z) = z; \ \omega_1(y) = y; \ \omega_2(x) = x; \ \omega_3(z) = z.$$

• A basis for $H^2_{*_2}(\mathcal{H}, z^*)$ is given by $\{(\varphi_1, \omega_1), (\varphi_2, \omega_2)\}$, with

$$\varphi_1(x,y) = x$$
; $\varphi_2(x,y) = y$; $\omega_1(y) = y$; $\omega_2(x) = x$.

Thank you for your attention!