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Outline of the talk

@ Lie superalgebras in characteristic 2

@ Left-symmetric superalgebras and connections

© Lagrangian extensions of Lie superalgebras

@ Computation of 4-dimensional Lagrangian extensions
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Lie superalgebras in characteristic 2, definition

A Lie superalgebra over a field K of characteristic p =2 is a
Z /2 Z-graded vector space g = gg & g7 such that:

@ the even part gg is a Lie algebra;
@ the odd part g; is a gg-module ;
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Lie superalgebras in characteristic 2, definition

A Lie superalgebra over a field K of characteristic p =2 is a
Z /2 Z-graded vector space g = gg & g7 such that:

@ the even part gg is a Lie algebra;
@ the odd part g; is a gg-module ;

© there is a map s : g7 — gj, satisfying s(Ax) = A\?s(x), such that
the bracket of two odd elements is given by:

[x,y] :==s(x +y) —s(x) —s(y), Vx,y € g1. (1)

The Jacobi identity involving the squaring reads as follows:

[s(). ] =[x [yl ¥x €91, Yy € 0. (2)
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A Lie superalgebra over a field K of characteristic p =2 is a
Z /2 Z-graded vector space g = gg & g7 such that:

@ the even part gg is a Lie algebra;
@ the odd part g; is a gg-module ;

© there is a map s : g7 — gj, satisfying s(Ax) = A\?s(x), such that
the bracket of two odd elements is given by:

[x,y] :==s(x +y) —s(x) —s(y), Vx,y € g1. (1)

The Jacobi identity involving the squaring reads as follows:

[s(). ] =[x [yl ¥x €91, Yy € 0. (2)

Example: any associative superalgebra with [a, b] = ab — ba and
s(a) = aa.
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Lie superalgebras in characteristic 2, remarks

1
o If p £ 2, take s(x) = E[X’X] (for x odd) to recover the usual
definition of a Lie superalgebra;
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1
o If p £ 2, take s(x) = E[X’X] (for x odd) to recover the usual
definition of a Lie superalgebra;

o This definition was given (independently) by Lebedev and Deligne.
Earlier instances can be found in
» Bahturin Y., Mikhalev A. V., Petrogradsky V. M., Zaicev, M. V.Infinite
dimensional Lie superalgebras (1992) (page 18);
» Nijenhuis, A. and Richardson, R. W., Cohomology and Deformations in Graded
Lie Algebras (1966).

o All the usual definitions have to take the squaring into account,
for example the derived superalgebras of g are given by

0 =g, g0+ =g, ] + Span{s(x). x € (a)s).
o Lie superalgebras in characteristic 2 admitting a Cartan matrix
have been classified by Bouarroudj, Grozman, Leites, SIGMA
2009.
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Lie superalgebras in characteristic 2, continued

Let g and b be two Lie superalgebras.
e An even linear map ¢ : g — b is called a Lie superalgebras
morphism if
v ([x.yls) = [p(x), e(¥)ly,  Yx € g5, Vy €,
0 55(x) = s 0 p(x), Vx € gi.
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Lie superalgebras in characteristic 2, continued

Let g and b be two Lie superalgebras.
e An even linear map ¢ : g — b is called a Lie superalgebras

morphism if
@([Xd’]g) = [QO(X),QO(}/)]{], VX € g@? v.y € 97
(0 54(x) = sy 0 p(x), Vx € g1

o A linear map D : g — g is called a derivation of g if

D([x,y]) = [D(x).y] + [x,D(y)]. Vx€gs y€g,
D(s(x)) = [D(x), x], Vx € gi.
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Lie superalgebras in characteristic 2, continued

Let g and b be two Lie superalgebras.
e An even linear map ¢ : g — b is called a Lie superalgebras

morphism if
@([Xd’]g) = [QO(X),QO(}/)]{], VX € g@? v.y € 97
(0 54(x) = sy 0 p(x), Vx € g1

o A linear map D : g — g is called a derivation of g if

D([x,y]) = [D(x).y] + [x,D(y)]. Vx€gs y€g,
D(s(x)) = [D(x), x], Vx € gi.

o A representation of g in a Z /2 Z-graded vector space M is an
even map p : g — End(M) satisfying
plx.y]) = lo(x),p(y)] V¥x,y €g;
p(s(x)) = (p(x))* Vx € gi.
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Lie superalgebras, classification in dim = 2

Proposition

Let g be a 2-dimensional Lie superalgebras over an arbitrary field of

characteristic 2. Then, g is isomorphic to one of the following
superalgebras.

o sdim(g) = (0[2): g = L(ljl2 = (0|ey, ).

o sdim(g) = (1]1); g = (e1]ez).

O Li; = (alei[a, e] =), Q L}, = (er|ex) (abelian);
Q Lij, = (alex; s(e) = e1);

o sdim(g) = (2|0): g = (e1, ]0).

o L%\o = (e1,&|0);[e1, ] = & ; Q ng = (e1, e2/0) (abelian);
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Lie superalgebras in characteristic 2, cohomology (1)

This cohomology was introduced by Bouarroudj and Makhlouf,
Mathematics (2023).

Let g be a Lie superalgebra in characteristic 2 and let M be a
g-module.

A 1-cocycle on g with values in M is a linear map ¢ : g — M such
that
dee(9)(x,2) :=x - p(2) + 2 p(x) + ¢([x. 2]) = 0,Yx, z € g;
() (x) = x - p(x) + ¢(s(x)) = 0, Vx €1

The space of 1-cocycles on g with values in M is denoted by
XZY(g; M).
We also use the notation d!(¢p) := (d¢e(¢), *(¢))-
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Lie superalgebras in characteristic 2, cohomology (2)

A 2-cocycle on g with values in M consists of a pair («, ) such that:
@ a:gAg— Mis a bilinear map;
Q@ v : g7 — M satisfies

Y(Ax) = A2y(x), VA eK, Vx € g;
a(x,y) =v(x+y)+v(x) +9(y), Vx,y € g1
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Lie superalgebras in characteristic 2, cohomology (2)

A 2-cocycle on g with values in M consists of a pair («, ) such that:
@ a:gAg— Mis a bilinear map;
Q@ v : g7 — M satisfies

Y(Ax) = A2y(x), VA eK, Vx € g;
a(x,y) =v(x+y)+v(x) +9(y), Vx,y € g1

@ Forall x,y,z € g and for all u € g7, we have
d?e(a)(x,y, 2) ::xg?z (x-aly,z) + of[x,y],2))=0;
82 (o, V)(u, 2) := u-a(u, z) + z - y(u) + a(s(u), z) + o([u, 2], u) = 0.

The space of 2-cocycles on g with values in M is denoted by
XZ%(g; M).
We also use the notation 9%(c, ) := (d2g(), 6%(a, 7).

There is a graduation on XZ?(g; M) defined by |(r,7)| := |c]. J

(il = >yt
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Quasi-Frobenius Lie superalgebras

Let g = g5 @ g7 be a Lie superalgebra in characteristic 2. A bilinear
form w on g with values in K is called

@ ortho-orthogonal if w is even;

@ periplectic if w is odd;

@ closed if the following cocycle conditions are satisfied:

X(yﬁzw([x,y],z):O, Vx,y,z € g; (3)

w(s(x),y) =wlx [xy]), ¥x €91, Vycg. (4)
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Quasi-Frobenius Lie superalgebras

Let g = g5 @ g7 be a Lie superalgebra in characteristic 2. A bilinear
form w on g with values in K is called

@ ortho-orthogonal if w is even;

@ periplectic if w is odd;

@ closed if the following cocycle conditions are satisfied:

X,(yD,z w([x,y],z) =0, Vx,y,z € g; (3)
w(s(x),y) =wlx,[x,y]), Vxegr, Vyeg.  (4)
An even bilinear form on g is called 1-antisymmetric if
w(x,y) =w(y,x), ¥x,y € gs. t. [x| =l|y|; and w(x,x) =0Vx € g5.
An odd bilinear form on g is called 1-antisymmetric if
w(x,y) =w(y,x), Vx,y € 9.

A Lie superalgebra g is called quasi-Frobenius if it is equipped with a
1-antisymmetric non-degenerate closed form w.
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Left-symmetric superalgebras in characteristic 2
A left-symmetric superalgebra (V/,>) in characteristic p = 2 is a vector superspace
V = V5 @ V4 endowed with a bilinear product >: V x V — V satisfying

() x>(y>z)+(xpy)pz = yp(xpz)+ (yox)>z, Vx,y,z€ V,
(i) xp(x>y) = (xpx)py, Vx € Vi, Vy € V.
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Left-symmetric superalgebras in characteristic 2

A left-symmetric superalgebra (V/,>) in characteristic p = 2 is a vector superspace
V = V5 @ V4 endowed with a bilinear product >: V x V — V satisfying

() x>(y>z)+(xpy)pz = yp(xpz)+ (yox)>z, Vx,y,z€ V,
(i) xp(x>y) = (xpx)py, Vx € Vi, Vy € V.

Proposition

Let (V,1) be a left-symmetric superalgebra. Then, (g(V),[-,],s) is a Lie
superalgebra with g(V) = V as superspaces and

[x,y] =xpy+y>x, Vx € V5, Vy € V,; (5)
s(x) == x> x, Vx € Vi. (6)

A left-symmetric product > on a Lie superalgebra (V, [, ], s) is called compatible
with the Lie superalgebra structure if Conditions (5) and (6) are satisfied.
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Left-symmetric superalgebras in characteristic 2, example

Proposition

Let (g, [, ], s) be a Lie superalgebra equipped with an invertible derivation D. Let
Xpy = D’l([X, D(y)]), Vx,y € g.

Then, > is a left-symmetric product compatible with the Lie structure.
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Left-symmetric superalgebras in characteristic 2, example

Proposition

Let (g, [, ], s) be a Lie superalgebra equipped with an invertible derivation D. Let
Xpy = D’l([x, D(y)]), Vx,y € g.

Then, > is a left-symmetric product compatible with the Lie structure.

Example. Consider the Hamiltonian superalgebra hn(0|4) (see Benayadi and Bouarroud;j,
Journal of Algebra, 2018). As a vector space it can be considered as
hn(0|4) ~ Span{H: | f € K[§,n]} ~ [¢,1]/ K1,

where &1, &2, M1, M2 are odd indeterminates and

of 9 of 9o of 0 of 9
e e

06 0m  Omo& 0% O Onp 0&
The Lie bracket [Hr, Hg] = H{r g} is given by the Poisson bracket:

gy =208  Of Og  Of g  Of Og
81T B om T om og, T 96 o, | o 062

f
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Let (g, [, ], s) be a Lie superalgebra equipped with an invertible derivation D. Let
Xpy = D’l([x, D(y)]), Vx,y € g.

Then, > is a left-symmetric product compatible with the Lie structure.

Example. Consider the Hamiltonian superalgebra hn(0|4) (see Benayadi and Bouarroud;j,
Journal of Algebra, 2018). As a vector space it can be considered as
hn(0|4) ~ Span{H: | f € K[§,n]} ~ [¢,1]/ K1,

where &1, &2, M1, M2 are odd indeterminates and

of 0 of 0 of 0 of 0
e e

06 0m  Omo& 0% O Onp 0&
The Lie bracket [Hr, Hg] = H{r g} is given by the Poisson bracket:

of og | Of g | Of Og , Of Og

fg} == — .
{ g} 861 8771 + 6171 851 8.52 87]2 8772 862

f

Then, its derived superalgebra h(,-,l)(0|4) admits an invertible
derivation, thus a left-symmetric structure.
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Classification in dimension 2

For each Lie superalgebra g of dimension 2, we classified up to isomorphism all the

non-zero left-symmetric structures that are compatible with the bracket and the
squaring of g.
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Classification in dimension 2

For each Lie superalgebra g of dimension 2, we classified up to isomorphism all the
non-zero left-symmetric structures that are compatible with the bracket and the
squaring of g.

g Bracket on g Left-symmetric product on g Conditions
€16 = & None
1 €161 =cey; €16 = € e#0,1
I-1\1 ler, 2] = e E— — 70,
€€ = €1, €16 = & None
erer =cer; e = (l+¢)e; et =ce e#0
&6 = e None
L%u s(e) =ea : : :
ele1 = €1; €1 = &; @ = &, & =@ None
. elep = e None
Li’u abelian 171 !
eler =€ a6 =& 66 =& None

The case where sdim(g) = (1]1).
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Classification in dimension 2

For each Lie superalgebra g of dimension 2, we classified up to isomorphism all the
non-zero left-symmetric structures that are compatible with the bracket and the
squaring of g.

g Bracket on g Left-symmetric product on g Conditions
€16 = & None
1 €161 =cey; €16 = € e#0,1
I-1\1 ler, 2] = e E— — 70,
€€ = €1, €16 = & None
erer =cer; e = (l+¢)e; et =ce e#0
&6 = e None
L%u s(e) =ea : : :
ele1 = €1; €1 = &; @ = &, & =@ None
. elep = e None
Li’u abelian 171 !
eler =€ a6 =& 66 =& None

The case where sdim(g) = (1]1).

e g= L%IO, [e1, &2] = e : 10 non-isomorphic left-symmetric products;

e g= L%IO, abelian: 5 non-isomorphic left-symmetric products.
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The language of connections

A connection on a Lie superalgebra g is an even linear map V : g — End(g).
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A connection on a Lie superalgebra g is an even linear map V : g — End(g).

The torsion of the connection V is given by a pair of maps (T, U), where
T:gxg—g, and U:g; — g, are defined by

T(x,y) = Vily) + V,(x) + [x,y], Vx,y € g
U(x) := Vi(x) + s(x), Vx € g5.

The connection V is called torsion-free if (T, U) = (0,0).
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The language of connections

A connection on a Lie superalgebra g is an even linear map V : g — End(g).

The torsion of the connection V is given by a pair of maps (T, U), where
T:gxg—g, and U:g; — g, are defined by

T(x,y) = Vi(y) + Vy(x) + [x, 5], Vx5 € 0;
U(x) := Vi(x) + s(x), Vx € g5.
The connection V is called torsion-free if (T, U) = (0,0).

The curvature of the connection V is given by a pair of maps (R, S), where
R:gxg— End(g), and S : g7 — End(g), are defined by

R(X7.y) = V[X,y] + [VX7vy]7 \VIX?y S
S(X) = VS(X) + Vi, Vx € g3.
The connection V is called flat if (R,S) = (0, 0).
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The language of connections

e In the case where the connection V is flat, the map x — V is a
representation of the Lie superalgebra g into End(g).
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The language of connections

e In the case where the connection V is flat, the map x — V is a
representation of the Lie superalgebra g into End(g).

e A connection V on g defines a bilinear operation
rgxg—g xby:=V,(y), Vxyeg.

Proposition

The operation 1> is a left-symmetric product compatible with the
bracket and the squaring of g if and only if the connection V is flat
and torsion-free.

e There is also a notion of covariant derivative of the torsion and of
covariant derivative of the curvature of a connection.

As in characteristic zero, a flat connection on g whose covariant
derivative of the torsion vanishes defines a (characteristic 2 version) of
a post-Lie product.

— = = = = SaNema



Lagrangian extensions

e To our best knowledge, Lagrangian extensions were introduced by
M. Bordemann under the name T *-extensions, dealing with
symmetric bilinear forms (Acta Math. Univ. Comenianae, 1997).
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e To our best knowledge, Lagrangian extensions were introduced by
M. Bordemann under the name T *-extensions, dealing with
symmetric bilinear forms (Acta Math. Univ. Comenianae, 1997).

e Roughly speaking, starting from a non-associative algebra A, he
defines a product and a symmetric bilinear form on the space
Ad A

e The notion was then studied by Baues and Cortes, who name it
Lagrangian extensions, in the context of Lie algebras admitting a
flat connection and the bilinear form is antisymmetric (Astérisque,
2016).

o The superization is due to Bouarroudj and Maeda (J. Algebra
Appl., 2023)
e Our goal: the characteristic 2 case.
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Change of parity, dual representations

Change of parity functor

Let V = V5 & V4 a Zy-graded vector space. We denote by I the change of parity
functor T : V +— M(V), where M(V) is another copy of V such that

|_|(V)5 = Vi; I'I(V)i = V(—).
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Change of parity, dual representations

Change of parity functor

Let V = V5 & V4 a Zy-graded vector space. We denote by I the change of parity
functor T : V +— M(V), where M(V) is another copy of V such that

|_|(V)5 = Vi; I'I(V)I = V@.

Let (g,w) be a quasi-Frobenius Lie superalgebra. A strong polarization of (g, w)
is a decomposition g = a @/N as vector superspaces, where a is a homogeneous
Lagrangian ideal of g (a* = a) and N is a Lagrangian subspace.

Let (h,[-, -]y, Sy) be a Lie superalgebra endowed with a torsion-free flat connection
V : h — End(h). We define the dual representations

p:bh — End(h*) and x : h — End(M(h*)),
p(x)(§) =&V, Vx € b, VEe b
(M) = Mo p(x) o N(N(E)).
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Construction of the Lagrangian extensions
Let (o, 7) € XZ%(b,b%)5 (resp. (B,0) € XZ?(h,M(h*))5) be 2-cocycles.

On the space g := h @ h*. The brackets and squaring are defined as follows:

[ ¥ls =[xyl +alx,y),  [x.&ls = p(x)(§), Vx,y € b, VE € b’
Sp(x +&) = 55 (x) +7(x) + p(x)(§),  Vx € by, VE € by,
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Construction of the Lagrangian extensions
Let (o, 7) € XZ%(b,b%)5 (resp. (B,0) € XZ?(h,M(h*))5) be 2-cocycles.

On the space g := h @ h*. The brackets and squaring are defined as follows:

X, ¥lg =[x yly +alx,y),  [x€ly = p(x)(§), Vx,y €h, V€€ b
Sa(x 4 &) := sy(x) +v(x) + p(x)(§), Vx € bz, V& € by

We define an ’ortho—orthogonal ‘ form as follows:

wx+&y+¢) =¢&y) +C(x), Ix+Ey+(eg.

On the space g := h & M(H*). The brackets and squaring are defined as follows:

[ yla == Doyle + 80 y), DG TIE)]g = x()(N(E)),  Vx,y €b, VI(§) € N(H).
Sg(X) := sp(x) + 0(x) + x(x)(N(¢)), Vx € by, VI(E) € N(bg).
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Construction of the Lagrangian extensions
Let (o, 7) € XZ%(b,b%)5 (resp. (B,0) € XZ?(h,M(h*))5) be 2-cocycles.

On the space g := h @ h*. The brackets and squaring are defined as follows:

X, ¥lg =[x yly +alx,y),  [x€ly = p(x)(§), Vx,y €h, V€€ b
Sa(x 4 &) := sy(x) +v(x) + p(x)(§), Vx € bz, V& € by

We define an ’ortho—orthogonal ‘ form as follows:

wx+&y+¢) =¢&y) +C(x), Ix+Ey+(eg.

On the space g := h & M(H*). The brackets and squaring are defined as follows:

[ yla == Doyle + 80 y), DG TIE)]g = x()(N(E)),  Vx,y €b, VI(§) € N(H).
Sg(X) := sp(x) + 0(x) + x(x)(N(¢)), Vx € by, VI(E) € N(bg).

We define a | periplectic | form as follows:

k(x+ M),y + M) =&(y) +¢(x), YVx+&y+CEg. o



Construction of the Lagrangian extensions

In the sequel, | will focus on the ’ortho—orthogonal case.
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Construction of the Lagrangian extensions

In the sequel, | will focus on the ’ortho—orthogonal ‘ case.

We define the first and second Lagrangian cochain spaces as

XCH(b,5%) = {1 € XCH(b,5), $()(y) = v()(x), ¥y € b},
XCE(b,b*) = {(a,y) € XC?(bh,b*), satisfying (7) and (8)}, where

O a(x,y)(2) =0, Vx,y,z € b; (7)

X7y7z

10)(y) + alx,y)(x) =0, ¥x € by, Vy €b. (8)
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Construction of the Lagrangian extensions

Theorem

Let (h, V) be a Lie superalgebra equipped with a flat and torsion-free
connection V and let («,7y) € XZ?(h,h*) be an even 2-cocycle.

Q@ The form w on g = b @ b* is closed if and only if (a,7y) is a

2-cocycle.
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Construction of the Lagrangian extensions

Theorem

Let (h, V) be a Lie superalgebra equipped with a flat and torsion-free
connection V and let («,7y) € XZ?(h,h*) be an even 2-cocycle.

Q@ The form w on g = b & b* is closed if and only if (a,7) is a

2-cocycle.

@ In this case, one can canonically define a strongly polarized
quasi-Frobenius Lie superalgebra (g,w, b*, ), where g = h & b*,
called T*-extension of (h, V).
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The converse

Theorem

Let (g,wgy, a, N) be a strongly polarized quasi-Frobenius Lie
superalgebra and let b :== g/ a.

20 /24



The converse

Theorem

Let (g,wgy, a, N) be a strongly polarized quasi-Frobenius Lie
superalgebra and let b :== g/ a.

@ There is a non-degenerate bilinear pairing between by and a by
declaring

wy(u, @) == wy(0,a), Yuebh, Vacea, (9)
where @ is a lift of u to g.

20 /24



The converse

Theorem

Let (g,wgy, a, N) be a strongly polarized quasi-Frobenius Lie
superalgebra and let b :== g/ a.

@ There is a non-degenerate bilinear pairing between by and a by
declaring

wy(u, @) == wy(0,a), Yuebh, Vacea, (9)
where @ is a lift of u to g.

@ There is a flat and torsion-free connection V on by defined by

wp(Vu(v), a) = wy(V, [T, a]), Yu,vebh, Vaca. (10)

20 /24



The converse

Theorem

Let (g,wgy, a, N) be a strongly polarized quasi-Frobenius Lie
superalgebra and let b :== g/ a.

@ There is a non-degenerate bilinear pairing between by and a by
declaring

wy(u, @) == wy(0,a), Yuebh, Vacea, (9)
where @ is a lift of u to g.

@ There is a flat and torsion-free connection V on by defined by
wp(Vu(v), a) = wy(V, [T, a]), Yu,vebh, Vaca. (10)

Q@ Ifw is ortho-orthogonal, there exists an even Lagrangian cocycle

(v, y) such that (g,w, a, N) is isomorphic to the T*-extension of
(b, V) by (a,7).

20 /24



Equivalence of Lagrangian extensions

An isomorphism of Lagrangian extensions of by is a Lie isomorphism

 : (g,w) = (¢,w) satisfying w(x, y) = o' (®(x), d(y)), ¥x,y € g,
such that the following diagram commutes:

0 a

|

h 0

‘- @
o

—
a
~
=1
~
=
N
=

7

21/24



Equivalence of Lagrangian extensions

An isomorphism of Lagrangian extensions of by is a Lie isomorphism

 : (g,w) = (¢,w) satisfying w(x, y) = o' (®(x), d(y)), ¥x,y € g,
such that the following diagram commutes:

0 a

|

h 0

‘- @
o

—_
a
~
=1
~
=
N
=

7

Theorem

Let (b, V) be a Lie superalgebra equipped with a flat torsion-free
connection V. Two Lagrangian extensions of (h, V) are isomorphic if
and only if they correspond to the same extension 2-cocycle in

XH;(h,5%)s.
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An example

Consider b := L%“ given in the basis (e|f) by [e,f] = f and s = 0.
Let £ € K. We define a flat torsion-free connection V¢ on h by

Vi(e) = (1 +e)e, VE(F)=cf, Vi(e)=(1+e)f, Vi(f)=0.

O In the case where € # 1, we have XH?(h, h*) = 0;
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An example

Consider b := L%“ given in the basis (e|f) by [e,f] = f and s = 0.
Let £ € K. We define a flat torsion-free connection V¢ on h by

Vi(e) = (1 +e)e, VE(F)=cf, Vi(e)=(1+e)f, Vi(f)=0.

O In the case where € # 1, we have XH?(h, h*) = 0;

@ In the case where ¢ = 1, XHZ(h, b*) is one-dimensional and
spanned by (ap, 1), where

a=f"@e* AfY () = e
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Computation of 4-dimensional Lagrangian extensions

@ We start from the classification of 2-dimensional Lie superalgebras
h and 2-dimensional left-symmetric superalgebras.
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Computation of 4-dimensional Lagrangian extensions

@ We start from the classification of 2-dimensional Lie superalgebras
h and 2-dimensional left-symmetric superalgebras.
@ Every left-symmetric product on § produces a module structure
on b and on h*.
@ For each of them, we compute the second Lagrangian cohomology
groups XH (b, b*) and XHZ(b, N(b")).
@ We build the corresponding T*- and [T *-extensions.
@ We obtain a list of
» 42 Lie superalgebras of sdim = (2]2);
» 33 Lie superalgebras of sdim = (4/0);
» 1 Lie superalgebra of sdim = (04).
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Computation of 4-dimensional Lagrangian extensions

o

2]

We start from the classification of 2-dimensional Lie superalgebras
h and 2-dimensional left-symmetric superalgebras.
Every left-symmetric product on b produces a module structure
on b and on h*.
For each of them, we compute the second Lagrangian cohomology
groups XH (b, b*) and XHZ(b, N(b")).
We build the corresponding T*- and [1T*-extensions.
We obtain a list of

» 42 Lie superalgebras of sdim = (2]2);

» 33 Lie superalgebras of sdim = (4/0);

» 1 Lie superalgebra of sdim = (04).
Some of them are isomorphic or symplectomorphic. We detect
them, using some tables of invariants that we computed.
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Thank you for your attention

Main reference:

S. Benayadi, S. Bouarroudj, Q. Ehret,
Left-symmetric superalgebras and Lagrangian extensions of Lie
superalgebras in characteristic 2,
to appear on arXiv.
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