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Lie superalgebras in characteristic 2, definition

A Lie superalgebra over a field K of characteristic p = 2 is a
Z /2Z-graded vector space g = g0̄ ⊕ g1̄ such that:

1 the even part g0̄ is a Lie algebra;
2 the odd part g1̄ is a g0̄-module ;

3 there is a map s : g1̄ → g0̄, satisfying s(λx) = λ2s(x), such that
the bracket of two odd elements is given by:

[x , y ] := s(x + y) − s(x) − s(y), ∀x , y ∈ g1̄. (1)

The Jacobi identity involving the squaring reads as follows:

[s(x), y ] = [x , [x , y ]], ∀x ∈ g1̄, ∀y ∈ g. (2)

Example: any associative superalgebra with [a, b] = ab − ba and
s(a) = aa.
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Lie superalgebras in characteristic 2, remarks

If p ̸= 2, take s(x) =
1

2
[x , x ] (for x odd) to recover the usual

definition of a Lie superalgebra;

This definition was given (independently) by Lebedev and Deligne.
Earlier instances can be found in

▶ Bahturin Y., Mikhalev A. V., Petrogradsky V. M., Zaicev, M. V.Infinite
dimensional Lie superalgebras (1992) (page 18);

▶ Nijenhuis, A. and Richardson, R. W., Cohomology and Deformations in Graded
Lie Algebras (1966).

All the usual definitions have to take the squaring into account,
for example the derived superalgebras of g are given by

g(0) = g, g(i+1) = [g(i), g(i)] + Span
{
s(x), x ∈ (g(i))1̄

}
.

Lie superalgebras in characteristic 2 admitting a Cartan matrix
have been classified by Bouarroudj, Grozman, Leites, SIGMA
2009.
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Lie superalgebras in characteristic 2, continued

Let g and h be two Lie superalgebras.
An even linear map φ : g → h is called a Lie superalgebras
morphism if

φ ([x , y ]g) = [φ(x), φ(y)]h, ∀x ∈ g0̄, ∀y ∈ g,

φ ◦ sg(x) = sh ◦ φ(x), ∀x ∈ g1̄.

A linear map D : g → g is called a derivation of g if

D([x , y ]) = [D(x), y ] + [x ,D(y)], ∀x ∈ g0̄, y ∈ g,

D(s(x)) = [D(x), x ], ∀x ∈ g1̄.

A representation of g in a Z /2Z-graded vector space M is an
even map ρ : g → End(M) satisfying

ρ([x , y ]) = [ρ(x), ρ(y)] ∀x , y ∈ g;

ρ(s(x)) = (ρ(x))2 ∀x ∈ g1̄.

Such a M is called a g-module.
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Lie superalgebras, classification in dim = 2

Proposition

Let g be a 2-dimensional Lie superalgebras over an arbitrary field of
characteristic 2. Then, g is isomorphic to one of the following
superalgebras.

sdim(g) = (0|2): g = L1
0|2 = ⟨0|e1, e2⟩.

sdim(g) = (1|1); g = ⟨e1|e2⟩.

1 L1
1|1 = ⟨e1|e2; [e1, e2] = e2⟩;

2 L2
1|1 = ⟨e1|e2; s(e2) = e1⟩;

3 L3
1|1 = ⟨e1|e2⟩ (abelian);

sdim(g) = (2|0): g = ⟨e1, e2|0⟩.

1 L1
2|0 = ⟨e1, e2|0⟩ ; [e1, e2] = e2 ; 2 L2

2|0 = ⟨e1, e2|0⟩ (abelian);
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Lie superalgebras in characteristic 2, cohomology (1)

This cohomology was introduced by Bouarroudj and Makhlouf,
Mathematics (2023).

Let g be a Lie superalgebra in characteristic 2 and let M be a
g-module.

A 1-cocycle on g with values in M is a linear map φ : g → M such
that

d1
CE(φ)(x , z) := x · φ(z) + z · φ(x) + φ([x , z ]) = 0,∀x , z ∈ g;

δ1(φ)(x) := x · φ(x) + φ(s(x)) = 0, ∀x ∈ g1̄ .

The space of 1-cocycles on g with values in M is denoted by
XZ 1(g;M).
We also use the notation d1(φ) := (d1

CE(φ), δ
1(φ)).
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Lie superalgebras in characteristic 2, cohomology (2)

A 2-cocycle on g with values in M consists of a pair (α, γ) such that:
1 α : g ∧ g → M is a bilinear map;
2 γ : g1̄ → M satisfies

γ(λx) = λ2γ(x), ∀λ ∈ K, ∀x ∈ g;

α(x , y) = γ(x + y) + γ(x) + γ(y), ∀x , y ∈ g1̄;

3 For all x , y , z ∈ g and for all u ∈ g1̄, we have

d2
CE(α)(x , y , z) := ⟲

x,y ,z

(
x · α(y , z) + α([x , y ], z)

)
= 0;

δ2(α, γ)(u, z) := u · α(u, z) + z · γ(u) + α(s(u), z) + α([u, z], u) = 0.

The space of 2-cocycles on g with values in M is denoted by
XZ 2(g;M).
We also use the notation d2(α, γ) := (d2

CE(α), δ
2(α, γ)).

There is a graduation on XZ 2(g;M) defined by |(α, γ)| := |α|.
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Quasi-Frobenius Lie superalgebras

Let g = g0̄ ⊕ g1̄ be a Lie superalgebra in characteristic 2. A bilinear
form ω on g with values in K is called

1 ortho-orthogonal if ω is even;
2 periplectic if ω is odd;
3 closed if the following cocycle conditions are satisfied:

⟲
x ,y ,z

ω([x , y ], z) = 0, ∀x , y , z ∈ g; (3)

ω(s(x), y) = ω(x , [x , y ]), ∀x ∈ g1̄, ∀y ∈ g. (4)

An even bilinear form on g is called 1̄-antisymmetric if

ω(x , y) = ω(y , x), ∀x , y ∈ g s. t. |x | = |y |; and ω(x , x) = 0 ∀x ∈ g0̄.

An odd bilinear form on g is called 1̄-antisymmetric if

ω(x , y) = ω(y , x), ∀x , y ∈ g.

A Lie superalgebra g is called quasi-Frobenius if it is equipped with a
1̄-antisymmetric non-degenerate closed form ω.
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Left-symmetric superalgebras in characteristic 2

A left-symmetric superalgebra (V , ▷) in characteristic p = 2 is a vector superspace

V = V0̄ ⊕ V1̄ endowed with a bilinear product ▷ : V × V → V satisfying

(i) x ▷(y ▷ z) + (x ▷ y) ▷ z = y ▷(x ▷ z) + (y ▷ x) ▷ z , ∀x , y , z ∈ V ;

(ii) x ▷(x ▷ y) = (x ▷ x) ▷ y , ∀x ∈ V1̄, ∀y ∈ V .

Proposition

Let (V , ▷) be a left-symmetric superalgebra. Then, (g(V ), [·, ·], s) is a Lie

superalgebra with g(V ) = V as superspaces and

[x , y ] := x ▷ y + y ▷ x , ∀x ∈ V0̄,∀y ∈ V ; (5)

s(x) := x ▷ x , ∀x ∈ V1̄. (6)

A left-symmetric product ▷ on a Lie superalgebra (V , [·, ·], s) is called compatible
with the Lie superalgebra structure if Conditions (5) and (6) are satisfied.
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Left-symmetric superalgebras in characteristic 2, example

Proposition

Let (g, [·, ·], s) be a Lie superalgebra equipped with an invertible derivation D. Let

x ▷ y := D−1
(
[x ,D(y)]

)
, ∀x , y ∈ g.

Then, ▷ is a left-symmetric product compatible with the Lie structure.

Example. Consider the Hamiltonian superalgebra hΠ(0|4) (see Benayadi and Bouarroudj,
Journal of Algebra, 2018). As a vector space it can be considered as

hΠ(0|4) ≃ Span{Hf | f ∈ K[ξ, η]} ≃ [ξ, η]/K ·1,

where ξ1, ξ2, η1, η2 are odd indeterminates and

Hf =
∂f

∂ξ1

∂

∂η1
+

∂f

∂η1

∂

∂ξ1
+

∂f

∂ξ2

∂

∂η2
+

∂f

∂η2

∂

∂ξ2
.

The Lie bracket [Hf ,Hg ] = H{f ,g} is given by the Poisson bracket:

{f , g} :=
∂f

∂ξ1

∂g

∂η1
+

∂f

∂η1

∂g

∂ξ1
+

∂f

∂ξ2

∂g

∂η2
+

∂f

∂η2

∂g

∂ξ2
.

Then, its simple derived superalgebra h
(1)
Π (0|4) admits an invertible

derivation, thus a left-symmetric structure.
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Classification in dimension 2

For each Lie superalgebra g of dimension 2, we classified up to isomorphism all the
non-zero left-symmetric structures that are compatible with the bracket and the
squaring of g.

g Bracket on g Left-symmetric product on g Conditions

L1
1|1 [e1, e2] = e2

e1e2 = e2 None
e1e1 = εe1; e1e2 = e2 ε ̸= 0, 1
e1e1 = e1; e1e2 = e2 None

e1e1 = εe1; e1e2 = (1 + ε)e2; e2e1 = εe2 ε ̸= 0

L2
1|1 s(e2) = e1

e2e2 = e1 None
e1e1 = e1; e1e2 = e2; e2e1 = e2; e2e2 = e1 None

L3
1|1 abelian

e1e1 = e1 None
e1e1 = e1; e1e2 = e2; e2e1 = e2 None

The case where sdim(g) = (1|1).

g = L1
2|0, [e1, e2] = e2 : 10 non-isomorphic left-symmetric products;

g = L2
2|0, abelian: 5 non-isomorphic left-symmetric products.
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Classification in dimension 2

For each Lie superalgebra g of dimension 2, we classified up to isomorphism all the
non-zero left-symmetric structures that are compatible with the bracket and the
squaring of g.
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The language of connections

A connection on a Lie superalgebra g is an even linear map ∇ : g → End(g).

The torsion of the connection ∇ is given by a pair of maps (T ,U), where

T : g × g → g, and U : g1̄ → g, are defined by

T (x , y) := ∇x(y) + ∇y(x) + [x , y ], ∀x , y ∈ g;

U(x) := ∇x(x) + s(x), ∀x ∈ g1̄.

The connection ∇ is called torsion-free if (T ,U) = (0, 0).

The curvature of the connection ∇ is given by a pair of maps (R,S), where

R : g × g → End(g), and S : g1̄ → End(g), are defined by

R(x , y) := ∇[x ,y ] + [∇x ,∇y ], ∀x , y ∈ g;

S(x) := ∇s(x) + ∇2
x , ∀x ∈ g1̄.

The connection ∇ is called flat if (R,S) = (0, 0).
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The language of connections

In the case where the connection ∇ is flat, the map x 7→ ∇x is a
representation of the Lie superalgebra g into End(g).

A connection ∇ on g defines a bilinear operation

▷ : g × g → g, x ▷ y := ∇x(y), ∀x , y ∈ g.

Proposition

The operation ▷ is a left-symmetric product compatible with the
bracket and the squaring of g if and only if the connection ∇ is flat
and torsion-free.

There is also a notion of covariant derivative of the torsion and of
covariant derivative of the curvature of a connection.

As in characteristic zero, a flat connection on g whose covariant
derivative of the torsion vanishes defines a (characteristic 2 version) of
a post-Lie product.
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Lagrangian extensions

To our best knowledge, Lagrangian extensions were introduced by
M. Bordemann under the name T ∗-extensions, dealing with
symmetric bilinear forms (Acta Math. Univ. Comenianae, 1997).

Roughly speaking, starting from a non-associative algebra A, he
defines a product and a symmetric bilinear form on the space
A ⊕ A∗.

The notion was then studied by Baues and Cortes, who name it
Lagrangian extensions, in the context of Lie algebras admitting a
flat connection and the bilinear form is antisymmetric (Astérisque,
2016).

The superization is due to Bouarroudj and Maeda (J. Algebra
Appl., 2023)
Our goal: the characteristic 2 case.
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Change of parity, dual representations

Change of parity functor

Let V = V0̄ ⊕ V1̄ a Z2-graded vector space. We denote by Π the change of parity
functor Π : V 7→ Π(V ), where Π(V ) is another copy of V such that

Π(V )0̄ := V1̄; Π(V )1̄ := V0̄.

Let (g, ω) be a quasi-Frobenius Lie superalgebra. A strong polarization of (g, ω)
is a decomposition g = a⊕N as vector superspaces, where a is a homogeneous
Lagrangian ideal of g (a⊥ = a) and N is a Lagrangian subspace.

Let (h, [·, ·]h, sh) be a Lie superalgebra endowed with a torsion-free flat connection

∇ : h → End(h). We define the dual representations

ρ : h → End(h∗) and χ : h → End(Π(h∗)),

ρ(x)(ξ) := ξ ◦ ∇x , ∀x ∈ h, ∀ξ ∈ h∗;

χ(x)
(
Π(ξ)

)
:= Π ◦ ρ(x) ◦ Π

(
Π(ξ)

)
.
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Construction of the Lagrangian extensions

Let (α, γ) ∈ XZ 2(h, h∗)0̄ (resp. (β, θ) ∈ XZ 2(h,Π(h∗))0̄) be 2-cocycles.

On the space g := h ⊕ h∗. The brackets and squaring are defined as follows:

[x , y ]g := [x , y ]h + α(x , y), [x , ξ]g := ρ(x)(ξ), ∀x , y ∈ h, ∀ξ ∈ h∗.

sg(x + ξ) := sh(x) + γ(x) + ρ(x)(ξ), ∀x ∈ h1̄, ∀ξ ∈ h∗
1̄.

We define an ortho-orthogonal form as follows:

ω(x + ξ, y + ζ) = ξ(y) + ζ(x), ∀x + ξ, y + ζ ∈ g.

On the space g := h ⊕ Π(h∗). The brackets and squaring are defined as follows:

[x , y ]g := [x , y ]h + β(x , y), [x ,Π(ξ)]g := χ(x)(Π(ξ)), ∀x , y ∈ h, ∀Π(ξ) ∈ Π(h∗).

sg(x) := sh(x) + θ(x) + χ(x)(Π(ξ)), ∀x ∈ h1̄, ∀Π(ξ) ∈ Π(h∗
1̄).

We define a periplectic form as follows:

κ(x +Π(ξ), y +Π(ζ)) = ξ(y) + ζ(x), ∀x + ξ, y + ζ ∈ g.
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Construction of the Lagrangian extensions

In the sequel, I will focus on the ortho-orthogonal case.

We define the first and second Lagrangian cochain spaces as

XC 1
L (h, h

∗) :=
{
ψ ∈ XC 1(h, h∗), ψ(x)(y) = ψ(y)(x), ∀x , y ∈ h

}
,

XC 2
L (h, h

∗) :=
{
(α, γ) ∈ XC 2(h, h∗), satisfying (7) and (8)

}
, where

⟲
x ,y ,z

α(x , y)(z) = 0, ∀x , y , z ∈ h; (7)

γ(x)(y) + α(x , y)(x) = 0, ∀x ∈ h1̄, ∀y ∈ h. (8)
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Construction of the Lagrangian extensions

Theorem

Let (h,∇) be a Lie superalgebra equipped with a flat and torsion-free
connection ∇ and let (α, γ) ∈ XZ 2(h, h∗)0̄ be an even 2-cocycle.

1 The form ω on g = h ⊕ h∗ is closed if and only if (α, γ) is a

Lagrangian 2-cocycle.

2 In this case, one can canonically define a strongly polarized
quasi-Frobenius Lie superalgebra (g, ω, h∗, h), where g = h ⊕ h∗,
called T ∗-extension of (h,∇).
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The converse

Theorem

Let (g, ωg, a,N) be a strongly polarized quasi-Frobenius Lie
superalgebra and let h := g/ a.

1 There is a non-degenerate bilinear pairing between h and a by
declaring

ωh(u, a) := ωg(ũ, a), ∀u ∈ h, ∀a ∈ a, (9)

where ũ is a lift of u to g.
2 There is a flat and torsion-free connection ∇ on h defined by

ωh(∇u(v), a) = ωg(ṽ , [ũ, a]), ∀u, v ∈ h, ∀a ∈ a . (10)

3 If ω is ortho-orthogonal, there exists an even Lagrangian cocycle
(α, γ) such that (g, ω, a,N) is isomorphic to the T ∗-extension of
(h,∇) by (α, γ).
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ωh(u, a) := ωg(ũ, a), ∀u ∈ h, ∀a ∈ a, (9)
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declaring

ωh(u, a) := ωg(ũ, a), ∀u ∈ h, ∀a ∈ a, (9)

where ũ is a lift of u to g.
2 There is a flat and torsion-free connection ∇ on h defined by

ωh(∇u(v), a) = ωg(ṽ , [ũ, a]), ∀u, v ∈ h, ∀a ∈ a . (10)

3 If ω is ortho-orthogonal, there exists an even Lagrangian cocycle
(α, γ) such that (g, ω, a,N) is isomorphic to the T ∗-extension of
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Equivalence of Lagrangian extensions

An isomorphism of Lagrangian extensions of h is a Lie isomorphism

Φ : (g, ω) → (g′, ω′) satisfying ω(x , y) = ω′
(
Φ(x),Φ(y)

)
, ∀x , y ∈ g,

such that the following diagram commutes:

Theorem

Let (h,∇) be a Lie superalgebra equipped with a flat torsion-free
connection ∇. Two Lagrangian extensions of (h,∇) are isomorphic if
and only if they correspond to the same extension 2-cocycle in
XH2

L(h, h
∗)0̄.
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An example

Consider h := L1
1|1 given in the basis (e|f ) by [e, f ] = f and s = 0.

Let ε ∈ K. We define a flat torsion-free connection ∇ε on h by

∇ε
e(e) = (1 + ε)e, ∇ε

e(f ) = εf , ∇ε
f (e) = (1 + ε)f , ∇ε

f (f ) = 0.

1 In the case where ε ̸= 1, we have XH2(h, h∗) = 0;

2 In the case where ε = 1, XH2
L(h, h

∗) is one-dimensional and
spanned by (α2, γ

1
3), where

α2 = f ∗ ⊗ e∗ ∧ f ∗; γ13(f ) = e∗.
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Computation of 4-dimensional Lagrangian extensions

1 We start from the classification of 2-dimensional Lie superalgebras
h and 2-dimensional left-symmetric superalgebras.

2 Every left-symmetric product on h produces a module structure
on h and on h∗.

3 For each of them, we compute the second Lagrangian cohomology
groups XH2

L(h, h
∗) and XH2

L(h,Π(h
∗)).

4 We build the corresponding T ∗- and ΠT ∗-extensions.
5 We obtain a list of

▶ 42 Lie superalgebras of sdim = (2|2);
▶ 33 Lie superalgebras of sdim = (4|0);
▶ 1 Lie superalgebra of sdim = (0|4).

6 Some of them are isomorphic or symplectomorphic. We detect
them, using some tables of invariants that we computed.
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Thank you for your attention

Main reference:

S. Benayadi, S. Bouarroudj, Q. Ehret,
Left-symmetric superalgebras and Lagrangian extensions of Lie

superalgebras in characteristic 2,
to appear on arXiv.
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