Central extensions of restricted Lie superalgebras and classification of *p*-nilpotent Lie superalgebras in dimension 4

Quentin Ehret

Strasbourg, January 2025

Joint work with Sofiane Bouarroudj

جامعـة نيويورك أبوظـي NYU ABU DHABI

< ロ > (四 > (四 > (三 > (三 >))) 문 (-)

Introduction

Preliminaries

8 Restricted cohomology and central extensions

- Chevalley-Eilenberg cohomology for Lie superalgebras
- A (very) brief history of restricted cohomology
- Restricted cohomology for restricted Lie superalgebras
- Central extensions of restricted Lie superalgebras

Classification of low dimensional restricted Lie superalgebras

- A brief history of classification of restricted Lie algebras
- Dimension 3
- Dimension 4: scalar restricted 2-cocycles
- Dimension 4: the classification

Let \mathbb{K} a field of characteristic p > 2 and A an associative \mathbb{K} -algebra. With the commutator, it's a Lie algebra. The adjoint representation is then given by

$$\operatorname{ad}_{x}(y) = xy - yx.$$

Let \mathbb{K} a field of characteristic p > 2 and A an associative \mathbb{K} -algebra. With the commutator, it's a Lie algebra. The adjoint representation is then given by

$$\operatorname{ad}_{x}(y) = xy - yx.$$

Let m > 0. Then

$$\operatorname{ad}_{x}^{m}(y) = \sum_{j=0}^{m} \binom{m}{j} (-1)^{m-j} x^{j} y x^{m-j}.$$

Let \mathbb{K} a field of characteristic p > 2 and A an associative \mathbb{K} -algebra. With the commutator, it's a Lie algebra. The adjoint representation is then given by

$$\operatorname{\mathsf{ad}}_{x}(y) = xy - yx.$$

Let m > 0. Then

$$\operatorname{ad}_{x}^{m}(y) = \sum_{j=0}^{m} \binom{m}{j} (-1)^{m-j} x^{j} y x^{m-j}.$$

Then, if m = p, we obtain

$$\operatorname{ad}_{x}^{p}(y) = x^{p}y - yx^{p} = \operatorname{ad}_{x^{p}}(y).$$

<ロト < 団ト < 臣 > < 臣 > 三 のへで 3/30

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map $(\cdot)^{[p]} : L \longrightarrow L$ satisfying for all $x, y \in L$ and for all $\lambda \in \mathbb{K}$:

$$(\lambda x)^{[p]} = \lambda^p x^{[p]};$$

Nathan Jacobson (1910-1999)

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map $(\cdot)^{[p]} : L \longrightarrow L$ satisfying for all $x, y \in L$ and for all $\lambda \in \mathbb{K}$:

$$(\lambda x)^{[p]} = \lambda^p x^{[p]};$$

$$[x, y^{[p]}] = [[\cdots [x, y], y], \cdots, y];$$

Nathan Jacobson (1910-1999)

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map $(\cdot)^{[p]} : L \longrightarrow L$ satisfying for all $x, y \in L$ and for all $\lambda \in \mathbb{K}$:

(
$$\lambda x$$
)^[p] = $\lambda^{p} x^{[p]}$;
(λx)^[p] = [[\cdots [x, y], y], \cdots , y];
($x, y^{[p]}$] = [[\cdots [x, y], y], \cdots , y];
($x + y$)^[p] = $x^{[p]} + y^{[p]} + \sum_{i=1}^{p-1} s_i(x, y)$,

Nathan Jacobson (1910-1999)

with $is_i(x, y)$ the coefficient of Z^{i-1} in $ad_{Zx+y}^{p-1}(x)$. Such a map $(-)^{[p]}: L \longrightarrow L$ is called p-map.

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map $(\cdot)^{[p]} : L \longrightarrow L$ satisfying for all $x, y \in L$ and for all $\lambda \in \mathbb{K}$:

•
$$(\lambda x)^{[p]} = \lambda^{p} x^{[p]};$$

• $[x, y^{[p]}] = [[\cdots [x, y], y], \cdots, y];$
• $(x + y)^{[p]} = x^{[p]} + y^{[p]} + \sum_{i=1}^{p-1} s_i(x, y),$

Nathan Jacobson (1910-1999)

with $is_i(x, y)$ the coefficient of Z^{i-1} in $ad_{Zx+y}^{p-1}(x)$. Such a map $(-)^{[p]}: L \longrightarrow L$ is called p-map.

Example: any associative algebra A with [a, b] = ab - ba and $a^{[p]} = a^p$, $\forall a, b \in A$.

Very useful :

$$\sum_{i=1}^{p-1} s_i(x, y) = \sum_{\substack{x_i = x \text{ or } y \\ x_p = x, x_{p-1} = y}} \frac{1}{\sharp\{x\}} [x_1, [x_2, [..., [x_{p-1}, x_p]...],$$

Very useful :

$$\sum_{i=1}^{p-1} s_i(x, y) = \sum_{\substack{x_i = x \text{ or } y \\ x_p = x, x_{p-1} = y}} \frac{1}{\sharp\{x\}} [x_1, [x_2, [..., [x_{p-1}, x_p]...],$$

Definition

A Lie algebra morphism $f : (L, [\cdot, \cdot], (\cdot)^{[p]}) \to (L', [\cdot, \cdot]', (\cdot)^{[p]'})$ is called restricted if

$$f(x^{[p]}) = f(x)^{[p]'}, \ \forall x \in L$$

A L-module M is called restricted if

$$x^{[p]} \cdot m = \left(\overbrace{x \cdot (x \cdots (x \cdot m) \cdots)}^{p \text{ terms}}\right), \ \forall x \in L, \ \forall m \in M.$$

Lie superalgebras

Definition

A Lie superalgebra $L = L_{\bar{0}} \oplus L_{\bar{1}}$ is a $\mathbb{Z}/2\mathbb{Z}$ -graded vector space equipped with a bilinear map $[\cdot, \cdot] : L \times L \to L$ satisfying for $x, y, z \in L$:

$$\begin{aligned} & |[x,y]| = |x| + |y|; \\ & (x,y) = -(-1)^{|x||y|}[y,x]; \\ & (-1)^{|x||z|}[x,[y,z]] + (-1)^{|x||y|}[y,[z,x]] + (-1)^{|y||z|}[z,[x,y]] = 0. \end{aligned}$$

If p = 3, the identity [x, [x, x]] = 0, $x \in L_{\overline{1}}$ has to be added as an axiom as well.

Lie superalgebras

Definition

A Lie superalgebra $L = L_{\bar{0}} \oplus L_{\bar{1}}$ is a $\mathbb{Z}/2\mathbb{Z}$ -graded vector space equipped with a bilinear map $[\cdot, \cdot] : L \times L \to L$ satisfying for $x, y, z \in L$:

$$\begin{aligned} & |[x,y]| = |x| + |y|; \\ & (x,y] = -(-1)^{|x||y|}[y,x]; \\ & (-1)^{|x||z|}[x,[y,z]] + (-1)^{|x||y|}[y,[z,x]] + (-1)^{|y||z|}[z,[x,y]] = 0. \end{aligned}$$

If p = 3, the identity [x, [x, x]] = 0, $x \in L_{\overline{1}}$ has to be added as an axiom as well.

Let $f: V \to W$ be a map between $\mathbb{Z}/2\mathbb{Z}$ -graded vector spaces. Then:

- the map f is called **even** if $f(V_{\overline{i}}) \subset W_{\overline{i}}$;
- the map f is called **odd** if $f(V_{\overline{i}}) \subset W_{\overline{i+1}}$;

Definition (Restricted Lie superalgebra)

A restricted Lie superalgebra is a Lie superalgebra $L=L_{\bar{0}}\oplus L_{\bar{1}}$ such that

- The even part $L_{\bar{0}}$ is a restricted Lie algebra;
- **2** The odd part $L_{\overline{1}}$ is a Lie $L_{\overline{0}}$ -module;

3
$$[x, y^{[p]}] = [[...[x, y], y], ..., y], \forall x \in L_{\bar{1}}, y \in L_{\bar{0}}.$$

Definition (Restricted Lie superalgebra)

A restricted Lie superalgebra is a Lie superalgebra $L=L_{\bar{0}}\oplus L_{\bar{1}}$ such that

<ロト < 部ト < 言ト < 言ト 言 のへで 7/30

Definition (Restricted Lie superalgebra)

A restricted Lie superalgebra is a Lie superalgebra $L = L_{\bar{0}} \oplus L_{\bar{1}}$ such that

Theorem (Jacobson)

Let $(e_j)_{j \in J}$ be a basis of $L_{\bar{0}}$, and let the elements $f_j \in L_{\bar{0}}$ be such that $(ad_{e_j})^p = ad_{f_j}$. Then, there exists exactly one p|2p-mapping $(\cdot)^{[p|2p]} : L \to L$ such that

$$e_j^{[p]} = f_j$$
 for all $j \in J$.

Chevalley-Eilenberg cohomology for Lie superalgebras

Let $L = L_{\bar{0}} \oplus L_{\bar{1}}$ be a restricted Lie superalgebra and let $M = M_{\bar{0}} \oplus M_{\bar{1}}$ be a restricted module.

For
$$n = 0$$
: $C_{CE}^0(L, M) := M$.

For n > 0: $C_{CE}^n(L, M)$ is the space of *n*-linear super anti-symmetric maps with values in M.

Chevalley-Eilenberg cohomology for Lie superalgebras

Let $L = L_{\bar{0}} \oplus L_{\bar{1}}$ be a restricted Lie superalgebra and let $M = M_{\bar{0}} \oplus M_{\bar{1}}$ be a restricted module.

For
$$n = 0$$
: $C_{CE}^0(L, M) := M$.

For n > 0: $C_{CE}^n(L, M)$ is the space of *n*-linear super anti-symmetric maps with values in M.

$$\begin{aligned} &d_{\mathrm{CE}}^{0}(m)(x) = (-1)^{|m||x|} x \cdot m \quad \forall m \in M \text{ and } \forall x \in L; \\ &d_{\mathrm{CE}}^{n}(\varphi)(x_{1}, \dots, x_{n}) \end{aligned} \\ &= \sum_{i < j} (-1)^{|x_{j}|(|x_{i+1}| + \dots + |x_{j-1}|) + j} \varphi(x_{1}, \dots, x_{i-1}, [x_{i}, x_{j}], x_{i+1}, \dots, \widetilde{x}_{j}, \dots, x_{n}) \\ &+ \sum_{j} (-1)^{|x_{j}|(|\varphi| + |x_{1}| + \dots + |x_{j-1}|) + j} x_{j} \cdot \varphi(x_{1}, \dots, \widetilde{x}_{j}, \dots, x_{n}) \\ &\text{ for any } \varphi \in C_{\mathsf{CE}}^{n-1}(L; M) \text{ with } n > 0, \text{ and } x_{1}, \dots, x_{n} \in L. \end{aligned}$$

The spaces $C_{CE}^n(L; M)$ are \mathbb{Z}_2 -graded.

A (very) brief history of restricted cohomology

• 1955 (Hochschild): $H^n_*(L, M) := \operatorname{Ext}^n_{U_p(L)}(\mathbb{F}, M).$

Gerhard Hochschild

A (very) brief history of restricted cohomology

• 1955 (Hochschild): $H^n_*(L, M) := \operatorname{Ext}^n_{U_p(L)}(\mathbb{F}, M).$

Gerhard Hochschild

• 2000 (Evans-Fuchs): explicit constructions of 2-cocycles and central extensions.

Tyler J. Evans

Dmitry B. Fuchs

A (very) brief history of restricted cohomology

• 1955 (Hochschild): $H^n_*(L, M) := \operatorname{Ext}^n_{U_p(L)}(\mathbb{F}, M).$

Gerhard Hochschild

• 2000 (Evans-Fuchs): explicit constructions of 2-cocycles and central extensions.

Tyler J. Evans

Dmitry B. Fuchs

• 2020 (Yuan-Chen-Cao): attempt to generalize to the superalgebras case.

Let $L = L_{\bar{0}} \oplus L_{\bar{1}}$ be a restricted Lie superalgebra and let M be a L-supermodule. We set $C^0_*(L, M) = M$ and $C^1_*(L, M) = \text{Hom}(L, M)$.

Let $L = L_{\bar{0}} \oplus L_{\bar{1}}$ be a restricted Lie superalgebra and let M be a L-supermodule.

We set $C^{0}_{*}(L, M) = M$ and $C^{1}_{*}(L, M) = \text{Hom}(L, M)$.

Definition (Restricted 2-cochains)

Let $\varphi \in C^2_{CE}(L, M)$ (ordinary Chevalley-Eilenberg 2-cochain) and $\omega : L \longrightarrow M$. Then ω is φ -compatible if

Let $L = L_{\bar{0}} \oplus L_{\bar{1}}$ be a restricted Lie superalgebra and let M be a L-supermodule.

We set $C^{0}_{*}(L, M) = M$ and $C^{1}_{*}(L, M) = \text{Hom}(L, M)$.

Definition (Restricted 2-cochains)

Let $\varphi \in C^2_{CE}(L, M)$ (ordinary Chevalley-Eilenberg 2-cochain) and $\omega : L \longrightarrow M$. Then ω is φ -compatible if

•
$$\omega(\lambda x) = \lambda^{p} \omega(x), \ \lambda \in \mathbb{F}, \ x \in L_{\bar{0}};$$

• $\omega(x + y) =$
 $\omega(x) + \omega(y) + \sum_{\substack{x_{i} = x \text{ or } y \\ x_{1} = x, \ x_{2} = y}} \frac{1}{\pi(x)} \sum_{k=0}^{p-2} (-1)^{k} x_{p} ... x_{p-k+1} \varphi([[...[x_{1}, x_{2}], x_{3}]..., x_{p-k-1}], x_{p-k}),$

with $x, y \in L$, $\pi(x)$ the number of factors x_i equal to x.

Let $L = L_{\bar{0}} \oplus L_{\bar{1}}$ be a restricted Lie superalgebra and let M be a L-supermodule.

We set $C^{0}_{*}(L, M) = M$ and $C^{1}_{*}(L, M) = \text{Hom}(L, M)$.

Definition (Restricted 2-cochains)

Let $\varphi \in C^2_{CE}(L, M)$ (ordinary Chevalley-Eilenberg 2-cochain) and $\omega : L \longrightarrow M$. Then ω is φ -compatible if

with $x, y \in L$, $\pi(x)$ the number of factors x_i equal to x.

$$\mathcal{C}^2_*(L,M) = ig\{(arphi,\omega), \; arphi \in \mathcal{C}^2_{\mathcal{CE}}(L,M), \; \omega \; \textit{is $arphi$-compatible}ig\}$$

 \sim We have a similar (although more complicated) definition for $C^{3}_{*}(L, M)$.

For $(\varphi, \omega) \in C^2_*(L; M)$, we write

$$(\varphi,\omega) = (\varphi_{\bar{0}},\omega_{\bar{0}}) + (\varphi_{\bar{1}},\omega_{\bar{1}}), \text{ where } \operatorname{Im}(\omega_{\bar{j}}) \subseteq M_{\bar{j}}.$$
 (1)

Observe that also $(\varphi_{\overline{i}}, \omega_{\overline{i}}) \in C^2_*(L; M)$, thanks to the φ -compatibility.

For $(\varphi, \omega) \in C^2_*(L; M)$, we write

$$(\varphi,\omega) = (\varphi_{\bar{0}},\omega_{\bar{0}}) + (\varphi_{\bar{1}},\omega_{\bar{1}}), \text{ where } \operatorname{Im}(\omega_{\bar{j}}) \subseteq M_{\bar{j}}.$$
 (1)

Observe that also $(\varphi_{\overline{j}}, \omega_{\overline{j}}) \in C^2_*(L; M)$, thanks to the φ -compatibility.

In the sequel we will define the maps

$$0 \longrightarrow C^0_*(L, M) \xrightarrow{d^0_*} C^1_*(L, M) \xrightarrow{d^1_*} C^2_*(L, M) \xrightarrow{d^1_*} C^2_*(L, M) \xrightarrow{d^2_*} C^3_*(L, M).$$

For $(\varphi, \omega) \in C^2_*(L; M)$, we write

$$(\varphi,\omega) = (\varphi_{\bar{0}},\omega_{\bar{0}}) + (\varphi_{\bar{1}},\omega_{\bar{1}}), \text{ where } \operatorname{Im}(\omega_{\bar{j}}) \subseteq M_{\bar{j}}.$$
 (1)

Observe that also $(\varphi_{\overline{j}}, \omega_{\overline{j}}) \in C^2_*(L; M)$, thanks to the φ -compatibility.

In the sequel we will define the maps

$$0 \longrightarrow C^0_*(L,M) \xrightarrow{d^0_*} C^1_*(L,M) \xrightarrow{d^1_*} C^2_*(L,M) \xrightarrow{d^1_*} C^2_*(L,M) \xrightarrow{d^2_*} C^3_*(L,M).$$

First, we take $d_*^0 := d_{CE}^0$.

Definition of the map $d^1_* : C^1_*(L, M) \longrightarrow C^2_*(L, M)$.

An element $\varphi \in C^1_*(L; M)$ induces a map $\operatorname{ind}^1(\varphi) : L_{\bar{0}} \to M$ given by

$$\operatorname{ind}^{1}(\varphi)(x) = \varphi(x^{[p]}) - x^{p-1}\varphi(x).$$

Definition of the map $d^1_* : C^1_*(L, M) \longrightarrow C^2_*(L, M)$.

An element $\varphi \in C^1_*(L; M)$ induces a map $\operatorname{ind}^1(\varphi) : L_{\bar{0}} \to M$ given by

$$\operatorname{ind}^{1}(\varphi)(x) = \varphi(x^{[p]}) - x^{p-1}\varphi(x).$$

Theorem (Evans-Fuchs)

• The map $ind^{1}(\varphi)$ is $d^{1}_{CE}\varphi$ -compatible. Therefore,

 $d^1_*(\varphi) := \left(d^1_{CE} \varphi, \operatorname{ind}^1(\varphi) \right) \in C^2_*(L; M).$

Definition of the map $d^1_* : C^1_*(L, M) \longrightarrow C^2_*(L, M).$

An element $\varphi \in C^1_*(L; M)$ induces a map $\operatorname{ind}^1(\varphi) : L_{\bar{0}} \to M$ given by

$$\operatorname{ind}^{1}(\varphi)(x) = \varphi(x^{[p]}) - x^{p-1}\varphi(x).$$

Theorem (Evans-Fuchs)

1 The map $ind^{1}(\varphi)$ is $d_{CE}^{1}\varphi$ -compatible. Therefore,

 $d^1_*(\varphi) := \left(d^1_{CE} \varphi, \operatorname{ind}^1(\varphi) \right) \in C^2_*(L; M).$

3 We have
$$d^1_* \circ d^0_* = 0$$

Definition of the map $d^1_* : C^1_*(L, M) \longrightarrow C^2_*(L, M)$.

An element $\varphi \in C^1_*(L; M)$ induces a map $\operatorname{ind}^1(\varphi) : L_{\bar{0}} \to M$ given by

$$\operatorname{ind}^{1}(\varphi)(x) = \varphi(x^{[p]}) - x^{p-1}\varphi(x).$$

Theorem (Evans-Fuchs)

• The map $\operatorname{ind}^1(\varphi)$ is $d_{CE}^1\varphi$ -compatible. Therefore,

 $d^1_*(\varphi) := \left(d^1_{CE} \varphi, \operatorname{ind}^1(\varphi) \right) \in C^2_*(L; M).$

2 We have $d_*^1 \circ d_*^0 = 0$.

• The space $H^1_*(L; M) := Ker(d^1_*) / Im(d^0_*)$ is well defined.

Definition of the map $d_*^2 : C_*^2(L, M) \longrightarrow C_*^3(L, M)$.

An element $(\varphi, \omega) \in C^2_*(L; M)$ induces a map $\operatorname{ind}^2(\varphi, \omega) : L \times L_{\bar{0}} \to M$ defined by

$$\operatorname{ind}^{2}(\varphi,\omega)(x,y) = \varphi\left(x,y^{[p]}\right) - \sum_{i+j=p-1} (-1)^{i} y^{i} \varphi\left(\left[\left[\cdots \left[x,\overline{y}\right], \cdots\right], y\right], y\right) + (-1)^{|\varphi||x|} x \omega(y),$$

for $\mathsf{Im}(\omega) \subseteq M_{|\varphi|}$, and then extended using (1).

Definition of the map $d_*^2 : C_*^2(L, M) \longrightarrow C_*^3(L, M)$.

An element $(\varphi, \omega) \in C^2_*(L; M)$ induces a map $\operatorname{ind}^2(\varphi, \omega) : L \times L_{\bar{0}} \to M$ defined by

$$\operatorname{ind}^{2}(\varphi,\omega)(x,y) = \varphi\left(x,y^{[p]}\right) - \sum_{i+j=p-1} (-1)^{i} y^{i} \varphi\left(\left[\left[\cdots \left[x,\overline{y}\right], \cdots\right], y\right]\right) + (-1)^{|\varphi||x|} x \omega(y),$$

for $\mathsf{Im}(\omega)\subseteq M_{|arphi|}$, and then extended using (1).

Theorem (Bouarroudj-E.)

• The map $ind^2(\varphi, \omega)$ is $d^2_{CE}\varphi$ -compatible.

Definition of the map $d_*^2 : C_*^2(L, M) \longrightarrow C_*^3(L, M)$.

An element $(\varphi, \omega) \in C^2_*(L; M)$ induces a map $\operatorname{ind}^2(\varphi, \omega) : L \times L_{\bar{0}} \to M$ defined by

$$\operatorname{ind}^{2}(\varphi,\omega)(x,y) = \varphi\left(x,y^{[p]}\right) - \sum_{i+j=p-1} (-1)^{i} y^{i} \varphi\left(\left[\left[\cdots \left[x,\overline{y}\right],\cdots\right],y\right]\right) + (-1)^{|\varphi||x|} x \omega(y),$$

for $\mathsf{Im}(\omega)\subseteq M_{|arphi|}$, and then extended using (1).

Theorem (Bouarroudj-E.)

• The map ind²
$$(\varphi, \omega)$$
 is $d^2_{CE}\varphi$ -compatible.

2 We have
$$d^2_* \circ d^1_* = 0$$
, where $d^2_*(\varphi, \omega) := \left(d^2_{CE} \varphi, \operatorname{ind}^2(\varphi, \omega) \right)$.

Definition of the map $d_*^2 : C_*^2(L, M) \longrightarrow C_*^3(L, M)$.

An element $(\varphi, \omega) \in C^2_*(L; M)$ induces a map $\operatorname{ind}^2(\varphi, \omega) : L \times L_{\bar{0}} \to M$ defined by

$$\operatorname{ind}^{2}(\varphi,\omega)(x,y) = \varphi\left(x,y^{[p]}\right) - \sum_{i+j=p-1} (-1)^{i} y^{i} \varphi\left(\left[\left[\cdots \left[x,\overline{y}\right],\cdots\right],y\right]\right) + (-1)^{|\varphi||x|} x \omega(y),$$

for $\mathsf{Im}(\omega)\subseteq M_{|arphi|}$, and then extended using (1).

Theorem (Bouarroudj-E.)

9 The map ind²
$$(\varphi, \omega)$$
 is d²_{CE} φ -compatible.

$$\textbf{ We have } d^2_* \circ d^1_* = 0, \text{ where } d^2_*(\varphi, \omega) := \left(d^2_{CE} \varphi, \operatorname{ind}^2(\varphi, \omega) \right).$$

So The space $H^2_*(L; M) := Ker(d^2_*) / Im(d^1_*)$ is well defined.

Example of computation

An example. Consider the Lie superalgebra

$$L = \langle e_1 | e_2, e_3 \rangle, \ [e_1, e_2] = e_3, \ e_1^{[p]} = 0.$$

Let $\varphi \in C^2_{CE}(L; L)$. A map $\omega : L_{\bar{0}} \to L$ is φ -compatible if and only if

$$\omega(\lambda x) = \lambda^{p}\omega(x) \text{ and } \omega(x+y) = \omega(x) + \omega(y), \ \forall x, y \in L_{\bar{0}}, \ \forall \lambda \in \mathbb{K}.$$
(2)

Example of computation

An example. Consider the Lie superalgebra

$$L = \langle e_1 | e_2, e_3 \rangle, \ [e_1, e_2] = e_3, \ e_1^{[p]} = 0.$$

Let $\varphi \in C^2_{\mathsf{CE}}(L; L)$. A map $\omega : L_{\bar{0}} \to L$ is φ -compatible if and only if

$$\omega(\lambda x) = \lambda^{p} \omega(x) \text{ and } \omega(x+y) = \omega(x) + \omega(y), \ \forall x, y \in L_{\bar{0}}, \ \forall \lambda \in \mathbb{K}.$$
(2)

Lemma

A basis for the Chevalley-Eilenberg 2-cocycles space $Z_{CE}^2(L; L)$ is given by

$$\varphi_1 = e_1 \otimes \Delta_{1,2} + 2e_2 \otimes \Delta_{2,2}; \quad \varphi_2 = -2e_1 \otimes \Delta_{1,3} + 2e_3 \otimes \Delta_{3,3};$$

$$\varphi_3 = e_2 \otimes \Delta_{1,2}; \qquad \qquad \varphi_4 = e_2 \otimes \Delta_{1,3};$$

$$egin{array}{rcl} arphi_5&=&2e_2\otimes\Delta_{2,2}+e_3\otimes\Delta_{2,3}; &arphi_6&=&e_3\otimes\Delta_{1,2}; \ arphi_7&=&e_3\otimes\Delta_{1,3}; &arphi_8&=&e_3\otimes\Delta_{2,2}, \end{array}$$

where $\Delta_{i,j}(e_k, e_l) = \delta_{i,k}\delta_{j,l}$ and $\Delta_{i,j} = -(-1)^{|e_i||e_j|}\Delta_{j,l}$.

The case where p > 3. Let $(\varphi, \omega) \in C^2_*(L; L)$.

Then,

 $(\varphi, \omega) \in Z^2_*(L; L) \text{ if and only if } \varphi \in Z^2_{\mathsf{CE}}(L; L) \text{ and } \omega(e_1) = \gamma e_3, \ \gamma \in \mathbb{K};$

The case where p > 3. Let $(\varphi, \omega) \in C^2_*(L; L)$.

Then,

- $(\varphi, \omega) \in Z^2_*(L; L) \text{ if and only if } \varphi \in Z^2_{\mathsf{CE}}(L; L) \text{ and } \omega(e_1) = \gamma e_3, \ \gamma \in \mathbb{K};$
- **2** φ_6 and φ_8 are Chevalley-Eilenberg coboundaries;

The case where p > 3. Let $(\varphi, \omega) \in C^2_*(L; L)$.

Then,

- $(\varphi, \omega) \in Z^2_*(L; L) \text{ if and only if } \varphi \in Z^2_{\mathsf{CE}}(L; L) \text{ and } \omega(e_1) = \gamma e_3, \ \gamma \in \mathbb{K};$
- **2** φ_6 and φ_8 are Chevalley-Eilenberg coboundaries;

The case where p > 3. Let $(\varphi, \omega) \in C^2_*(L; L)$.

Then,

- $(\varphi, \omega) \in Z^2_*(L; L) \text{ if and only if } \varphi \in Z^2_{\mathsf{CE}}(L; L) \text{ and } \omega(e_1) = \gamma e_3, \ \gamma \in \mathbb{K};$
- **2** φ_6 and φ_8 are Chevalley-Eilenberg coboundaries;

• ind¹(ψ) = 0, $\forall \psi \in C^1_*(L; L)$.

The case where p > 3. Let $(\varphi, \omega) \in C^2_*(L; L)$.

Then,

- $(\varphi, \omega) \in Z^2_*(L; L) \text{ if and only if } \varphi \in Z^2_{\mathsf{CE}}(L; L) \text{ and } \omega(e_1) = \gamma e_3, \ \gamma \in \mathbb{K};$
- $\ensuremath{{}^{\circ}}$ $\ensuremath{\varphi_{6}}$ and $\ensuremath{\varphi_{8}}$ are Chevalley-Eilenberg coboundaries;

• ind¹(ψ) = 0, $\forall \psi \in C^1_*(L; L)$.

Therefore, we have

$$H^2_*(L;L) = \mathsf{Span}\big\{(\varphi_1,0); \ (\varphi_2,0); \ (\varphi_3,0); \ (\varphi_4,0); \ (0,\omega_5)\big\},$$

where $\omega_5(e_1) = e_3$.

The case where p = 3. Let $(\varphi, \omega) \in C^2_*(L; L)$. Suppose that

 $\omega(e_1) = \gamma_1 e_1 + \gamma_2 e_2 + \gamma_3 e_3, \ \gamma_1, \gamma_2, \gamma_3 \in \mathbb{K}.$

Then,

• $\forall \varphi \in Z^2_{\mathsf{CE}}(L; L)$, we have $\operatorname{ind}^2(\varphi, \omega)(e_1, e_1) = \gamma_2 e_3$.

The case where p = 3. Let $(\varphi, \omega) \in C^2_*(L; L)$. Suppose that

 $\omega(e_1) = \gamma_1 e_1 + \gamma_2 e_2 + \gamma_3 e_3, \ \gamma_1, \gamma_2, \gamma_3 \in \mathbb{K}.$

Then,

Therefore,

$$H^2_*(L;L) = \text{Span}\{(\varphi_1, 0); \ (\varphi_2, 0); \ (\varphi_3, 0); \ (\varphi_4, \omega_4); \ (0, \omega_5)\},\$$

where $\omega_4(e_1) = e_1$ and $\omega_5(e_1) = e_3$.

A subcomplex

Let *L* be a restricted Lie superalgebra and *M* a restricted *L*-module. We define a subspace $C^2_*(L; M)^+ \subset C^2_*(L; M)$ by

$$C^2_*(L;M)^+ := \Big\{ (arphi, \omega) \in C^2_*(L;M), \ \mathsf{Im}(\omega) \subseteq M_{ar 0} \Big\}.$$

A subcomplex

Let L be a restricted Lie superalgebra and M a restricted L-module. We define a subspace $C^2_*(L; M)^+ \subset C^2_*(L; M)$ by

$$\mathcal{C}^2_*(L;\mathcal{M})^+ := \Big\{(arphi,\omega)\in \mathcal{C}^2_*(L;\mathcal{M}), \; \mathsf{Im}(\omega)\subseteq \mathcal{M}_{ar{0}}\Big\}.$$

Lemma

- (i) We have an inclusion $B^2_*(L; M)_{\bar{0}} \subset C^2_*(L; M)^+$.
- (ii) The space $C^2_*(L; M)^+$ is \mathbb{Z}_2 -graded and the degree of an homogeneous element $(\varphi, \omega) \in C^2_*(L; M)^+$ is given by $|(\varphi, \omega)| = |\varphi|$.

This Lemma allows us to consider the space $Z^2_*(L; M)^+ := \ker(d^2_{*|C^2_*(L;M)^+})$. Thus we can define

$$H^2_*(L; M)^+ := Z^2_*(L; M)^+ / B^2_*(L; M)_{\bar{0}}.$$

The space $H^2_*(L; M)^+$ is \mathbb{Z}_2 -graded.

Let $(L, [\cdot, \cdot], (\cdot)^{[p]})$ be a restricted Lie superalgebra, and M be a strongly abelian restricted Lie superalgebra (*i.e.*, $[m, n] = 0 \forall m, n \in M$, and $m^{[p]} = 0 \forall m \in M_{\bar{0}}$).

A **restricted extension** of L by M is a short exact sequence of restricted Lie superalgebras

$$0 \longrightarrow M \stackrel{\iota}{\longrightarrow} E \stackrel{\pi}{\longrightarrow} L \longrightarrow 0.$$

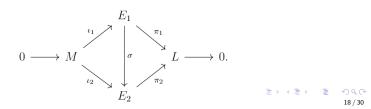
Let $(L, [\cdot, \cdot], (\cdot)^{[p]})$ be a restricted Lie superalgebra, and M be a strongly abelian restricted Lie superalgebra (*i.e.*, $[m, n] = 0 \ \forall m, n \in M$, and $m^{[p]} = 0 \ \forall m \in M_{\bar{0}}$).

A **restricted extension** of L by M is a short exact sequence of restricted Lie superalgebras

$$0 \longrightarrow M \stackrel{\iota}{\longrightarrow} E \stackrel{\pi}{\longrightarrow} L \longrightarrow 0.$$

In the case where $\iota(M) \subset \mathfrak{z}(E) := \{a \in E, [a, b] = 0 \ \forall b \in E\}$, *M* is a trivial *L*-module. These extensions are called **restricted central extensions**.

Two restricted central extensions of *L* by *M* are called **equivalent** if there is a restricted Lie superalgebras morphism $\sigma : E_1 \to E_2$ such that the following diagram commutes:



$$0 \longrightarrow M \stackrel{\iota}{\longrightarrow} E \stackrel{\pi}{\longrightarrow} L \longrightarrow 0.$$

Theorem (Bouarroudj-E.)

Let L be a restricted Lie superalgebra and M a strongly abelian restricted Lie superalgebra. Then, the equivalence classes of restricted central extensions of L by M are classified by $H^2_*(L; M)^+_{\overline{0}}$.

$$0 \longrightarrow M \stackrel{\iota}{\longrightarrow} E \stackrel{\pi}{\longrightarrow} L \longrightarrow 0.$$

Theorem (Bouarroudj-E.)

Let L be a restricted Lie superalgebra and M a strongly abelian restricted Lie superalgebra. Then, the equivalence classes of restricted central extensions of L by M are classified by $H^2_*(L; M)^+_{\overline{0}}$.

Structure maps on *E*. Let $(\varphi, \omega) \in Z^2_*(L; \mathbb{K})^+_{\bar{0}}$. The bracket and the *p*- map on *E* are given by

$$[x+m,y+n]_{\mathcal{E}} := [x,y] + \varphi(x,y), \ \forall x,y \in L, \ \forall m,n \in M;$$
(3)

$$(x+m)^{[p]_{\mathcal{E}}} := (x)^{[p]} + \omega(x), \ \forall x \in L_{\bar{0}}, \ \forall m \in M_{\bar{0}}.$$

$$(4)$$

Hamid Usefi

Salvatore Siciliano

 2016 (Schneider and Usefi): Classification of *p*-nilpotent restricted Lie algebras of dimension

 4 (Forum Math.);

Hamid Usefi

Salvatore Siciliano

- 2016 (Schneider and Usefi): Classification of *p*-nilpotent restricted Lie algebras of dimension

 4 (Forum Math.);
- 2016 (Darijani and Usefi): Classification of *p*-nilpotent restricted Lie algebras of dimension 5, $p \ge 3$, contains some mistakes (J. Algebra);

Hamid Usefi

Salvatore Siciliano

- 2016 (Schneider and Usefi): Classification of *p*-nilpotent restricted Lie algebras of dimension ≤ 4 (Forum Math.);
- 2016 (Darijani and Usefi): Classification of *p*-nilpotent restricted Lie algebras of dimension 5, $p \ge 3$, contains some mistakes (J. Algebra);
- 2023 (Maletesta and Siciliano): Classification of *p*-nilpotent restricted Lie algebras of dimension 5, *p* > 3, *using another method* (J. Algebra).

Hamid Usefi

Salvatore Siciliano

- 2016 (Schneider and Usefi): Classification of *p*-nilpotent restricted Lie algebras of dimension ≤ 4 (Forum Math.);
- 2016 (Darijani and Usefi): Classification of *p*-nilpotent restricted Lie algebras of dimension 5, $p \ge 3$, contains some mistakes (J. Algebra);
- 2023 (Maletesta and Siciliano): Classification of *p*-nilpotent restricted Lie algebras of dimension 5, *p* > 3, *using another method* (J. Algebra).

Proposition

Let L be a p-nilpotent restricted Lie superalgebra of dimension n. Then, L is isomorphic to a central extension by a restricted 2-cocycle of a p-nilpotent restricted Lie superalgebra of dimension n - 1.

Dimension 3

•
$$\underline{sdim}(L) = (1|2)$$
: $L = \langle e_1 | e_2, e_3 \rangle$.
• $L_{1|2}^1 = \langle e_1 | e_2, e_3 \rangle$ (abelian):
• $e_1^{[p]} = 0$;
• $L_{1|2}^2 = \langle e_1 | e_2, e_3; [e_2, e_3] = e_1 \rangle$:
• $e_1^{[p]} = 0$;

•
$$\underline{\operatorname{sdim}(L) = (2|1)}$$
: $L = \langle e_1, e_2 | e_3 \rangle$.

1
$$L_{2|1}^{1} = \langle e_{1}, e_{2}|e_{3} \rangle$$
 (abelian):
a $e_{1}^{[p]} = e_{2}^{[p]} = 0;$
b $e_{1}^{[p]} = e_{2}, e_{2}^{[p]} = 0.$

$$\begin{array}{l} \bullet \quad \mathbf{L}_{1|2}^{3} = \langle e_{1}|e_{2}, e_{3}; [e_{1}, e_{2}] = e_{3} \rangle : \\ \bullet \quad e_{1}^{[p]} = 0. \\ \bullet \quad \mathbf{L}_{1|2}^{4} = \langle e_{1}|e_{2}, e_{3}; [e_{3}, e_{3}] = e_{1} \rangle : \\ \bullet \quad e_{1}^{[p]} = 0; \end{array}$$

•
$$\underline{sdim}(L) = (3|0)$$
: $L = \langle e_1, e_2, e_3 \rangle$, (see Schneider-Usefi).

a
$$\mathbf{L}_{3|0}^{1} = \langle e_{1}, e_{2}, e_{3} \rangle$$
 (abelian):
a $e_{1}^{[p]} = e_{2}^{[p]} = e_{3}^{[p]} = 0;$
a $e_{1}^{[p]} = e_{2}, e_{2}^{[p]} = e_{3}^{[p]} = 0;$
b $e_{1}^{[p]} = e_{2}, e_{2}^{[p]} = e_{3}, e_{3}^{[p]} = 0.$

L²_{3|0} =
$$\langle e_1, e_2, e_3; [e_1, e_2] = e_3 \rangle$$

e $e_1^{[p]} = e_2^{[p]} = e_3^{[p]} = 0;$
e $e_1^{[p]} = e_3, e_2^{[p]} = e_3^{[p]} = 0.$
e $e_3^{[p]} = e_3, e_3^{[p]} = e_3^{[p]} = 0.$

The classification method

For each 3-dimensional Lie superalgebra of the previous list, we compute the equivalence classes of non-trivial *ordinary* 2-cocycles under the action by automorphisms given by

$$(A\varphi)(x,y) = \varphi(A(x),A(y)), \ \forall x,y \in L$$
(5)

- We build the corresponding central extensions.
- Some of the superalgebras obtained are isomorphic. We detect and remove redundancies.
- Using Jacobson's Theorem, we check whether the *p*-maps on the even part are compatible with the odd part.

Dimension 4: scalar restricted 2-cocycles

Notation: Let $L = L_{\bar{0}} \oplus L_{\bar{1}} = \langle e_1, \dots, e_n | e_{n+1}, \dots, e_{n+m} \rangle$ be a restricted Lie superalgebra of superdimension sdim(L) = (n|m). A basis for (ordinary) 2-cocycles is then given by

$$\Delta_{i,j}: L \times L \longrightarrow \mathbb{K}, \qquad 1 \leq i \leq n+m, \ i \leq j \leq n+m,$$

where $\Delta_{i,j}(e_k, e_l) = \delta_{i,k}\delta_{j,l}$ and $\Delta_{i,j} = -(-1)^{|e_i||e_j|}\Delta_{j,i}$.

Dimension 4: scalar restricted 2-cocycles

Notation: Let $L = L_{\bar{0}} \oplus L_{\bar{1}} = \langle e_1, \cdots, e_n | e_{n+1}, \cdots, e_{n+m} \rangle$ be a restricted Lie superalgebra of superdimension sdim(L) = (n|m). A basis for (ordinary) 2-cocycles is then given by

$$\Delta_{i,j}: L \times L \longrightarrow \mathbb{K}, \qquad 1 \leq i \leq n+m, \ i \leq j \leq n+m,$$

where $\Delta_{i,j}(e_k, e_l) = \delta_{i,k}\delta_{j,l}$ and $\Delta_{i,j} = -(-1)^{|e_i||e_j|}\Delta_{j,i}$.

Theorem

Suppose that L is a nilpotent Lie superalgebra of total dimension 3 with dim $(L_{\bar{1}}) \ge 1$ over an algebraically closed field of characteristic $p \ge 3$. The equivalence classes of (ordinary) non trivial homogeneous 2-cocycles on L are given by

$$\begin{split} \mathcal{L} &= \mathbf{L}_{0|3}^{1}: \ \Delta_{1,1}, \ \Delta_{1,2}, \ \Delta_{1,1} + \Delta_{2,3}; \\ \mathcal{L} &= \mathbf{L}_{1|2}^{1}: \ \Delta_{1,2}, \ \Delta_{2,3}, \ \Delta_{2,2} + \Delta_{2,3} + \Delta_{3,3}; \\ \mathcal{L} &= \mathbf{L}_{1|2}^{2}: \ \Delta_{2,2}, \ \Delta_{2,2} + \Delta_{3,3}; \\ \mathcal{L} &= \mathbf{L}_{1|2}^{3}: \ \Delta_{1,3}, \ \Delta_{2,2}; \\ \mathcal{L} &= \mathbf{L}_{1|2}^{4}: \ \Delta_{2,2}, \ \Delta_{2,3}, \ \Delta_{2,2} + \Delta_{2,3}. \\ \mathcal{L} &= \mathbf{L}_{2|1}^{1}: \ \Delta_{1,3}, \ \Delta_{1,2}, \ \Delta_{3,3}, \ \Delta_{1,2} + \Delta_{3,3}; \\ \mathcal{L} &= \mathbf{L}_{2|1}^{2}: \ \Delta_{1,3}. \end{split}$$

With the list of 2-cocycles, we can extend the Lie brackets using

$$[x, y]_{\text{new}} = [x, y]_{\text{old}} + \Delta(x, y)X.$$
(6)

With the list of 2-cocycles, we can extend the Lie brackets using

$$[x, y]_{\text{new}} = [x, y]_{\text{old}} + \Delta(x, y)X.$$
(6)

Example. Consider $L^3_{1|2} = \langle e_1 | e_2, e_3; [e_1, e_2] = e_3 \rangle$. The 2-cocycles are $\Delta_{1,3}$ and $\Delta_{2,2}$. We obtain four superalgebras of dimension 4.

Name	sdim	Cocycle	Added element	Bracket	
$L_{2 2}^{g}$	(2 2)	0	X even	$[e_1, e_2] = e_3$	
L ^d _{1 3}	(1 3)	0	X odd	$[e_1,e_2]=e_3$	
L ^e _{1 3}	(1 3)	$\Delta_{1,3}$	X odd	$[e_1, e_2] = e_3, \ [e_1, e_3] = X$	
L ^h _{2 2}	(2 2)	$\Delta_{2,2}$	X even	$[e_1, e_2] = e_3, \ [e_2, e_2] = X$	

Lie superalgebras obtained by central extensions of $L_{1|2}^3$.

Name	sdim	Cocycle	Added element	Bracket	
$L^{g}_{2 2}$	(2 2)	0	X even	$[e_1, e_2] = e_3$	
L ^d _{1 3}	(1 3)	0	X odd	$[e_1, e_2] = e_3$	
L ^e _{1 3}	(1 3)	$\Delta_{1,3}$	X odd	$[e_1, e_2] = e_3, \ [e_1, e_3] = X$	
$L_{2 2}^{h}$	(2 2)	$\Delta_{2,2}$	X even	$[e_1, e_2] = e_3, \ [e_2, e_2] = X$	

Lie superalgebras obtained by central extensions of $L_{1|2}^3$.

Name	sdim	Cocycle	Added element	Bracket
L ^a _{2 2}	(2 2)	0	X even	$[\cdot,\cdot]=0$
L ^a _{1 3}	(1 3)	0	X odd	$[\cdot,\cdot]=0$
L ^b _{1 3}	(1 3)	$\Delta_{1,2}$	X odd	$[e_1, e_3] = X$
L ^b _{2 2}	(2 2)	$\Delta_{2,3}$	X even	$[\mathbf{e}_2,\mathbf{e}_3]=X$
L ^c _{2 2}	(2 2)	$\Delta_{2,2}+\Delta_{2,3}+\Delta_{3,3}$	X even	$[e_2, e_2] = [e_2, e_3] = [e_3, e_3] = X$

Lie superalgebras obtained by extensions of $L^1_{1|2}$ (abelian).

Name	sdim	Cocycle	Added element	Bracket	
$L^{g}_{2 2}$	(2 2)	0	X even	$[e_1, e_2] = e_3$	
L ^d _{1 3}	(1 3)	0	X odd	$[e_1, e_2] = e_3$	
L ^e _{1 3}	(1 3)	$\Delta_{1,3}$	X odd	$[e_1, e_2] = e_3, [e_1, e_3] = X$	
$L_{2 2}^{h}$	(2 2)	$\Delta_{2,2}$	X even	$[e_1, e_2] = e_3, \ [e_2, e_2] = X$	

Lie superalgebras obtained by central extensions of $L_{1|2}^3$.

Name	sdim	Cocycle	Added element	Bracket
L ^a _{2 2}	(2 2)	0	X even	$[\cdot,\cdot]=0$
L ^a _{1 3}	(1 3)	0	X odd	$[\cdot,\cdot]=0$
L ^b _{1 3}	(1 3)	$\Delta_{1,2}$	X odd	$[e_1, e_3] = X$
L ^b _{2 2}	(2 2)	$\Delta_{2,3}$	X even	$[e_2, e_3] = X$
L ^c _{2 2}	(2 2)	$\Delta_{2,2}+\Delta_{2,3}+\Delta_{3,3}$	X even	$[e_2, e_2] = [e_2, e_3] = [e_3, e_3] = X$

Lie superalgebras obtained by extensions of $\mathsf{L}^1_{1|2}$ (abelian).

We know that $\mathsf{L}^d_{1|3} \ncong \mathsf{L}^e_{1|3}$ and $\mathsf{L}^a_{1|3} \ncong \mathsf{L}^b_{1|3}...$

Name	sdim	Cocycle	Added element	Bracket	
$L^{g}_{2 2}$	(2 2)	0	X even	$[e_1, e_2] = e_3$	
L ^d _{1 3}	(1 3)	0	X odd	$[e_1, e_2] = e_3$	
L ^e _{1 3}	(1 3)	$\Delta_{1,3}$	X odd	$[e_1, e_2] = e_3, \ [e_1, e_3] = X$	
$L_{2 2}^{h}$	(2 2)	$\Delta_{2,2}$	X even	$[e_1, e_2] = e_3, \ [e_2, e_2] = X$	

Lie superalgebras obtained by central extensions of $L_{1|2}^3$.

Name	sdim	Cocycle	Added element	Bracket
L ^a _{2 2}	(2 2)	0	X even	$[\cdot,\cdot]=0$
L ^a _{1 3}	(1 3)	0	X odd	$[\cdot,\cdot]=0$
L ^b _{1 3}	(1 3)	$\Delta_{1,2}$	X odd	$[e_1, e_3] = X$
L ^b _{2 2}	(2 2)	$\Delta_{2,3}$	X even	$[e_2, e_3] = X$
L ^c _{2 2}	(2 2)	$\Delta_{2,2}+\Delta_{2,3}+\Delta_{3,3}$	X even	$[e_2, e_2] = [e_2, e_3] = [e_3, e_3] = X$

Lie superalgebras obtained by extensions of $\mathsf{L}^1_{1|2}$ (abelian).

We know that $L^d_{1|3} \ncong L^e_{1|3}$ and $L^a_{1|3} \ncong L^b_{1|3}...$

But $L^b_{1|3} \cong L^d_{1|3}$.

Dimension 4: the classification. Detecting isomorphisms.

It is possible that two superalgebras obtained as central extensions by non-equivalent cocycles are isomorphic. We need to detect and remove redundancies.

L	[<i>L</i> , <i>L</i>]	$sdim(\mathfrak{z}(L))$	$sdim\left(H^1_{CE}(L;\mathbb{K})\right)$	$sdim\left(H^2_{CE}(L;\mathbb{K})\right)$	$sdim\left(H^3_{CE}(L;\mathbb{K})\right)$
$L^{a}_{1 3}$	0	1 3	1 3	6 3	7 9
$L_{1 3}^{b}$	$\langle X \rangle$	0 2	1 2	3 2	3 4 (3 5 if p = 3)
$L_{1 3}^{c}$	$\langle e_1 \rangle$	1 1	0 3	5 0	0 7
$L_{1\mid 3}^{e}$	$\langle e_3, X \rangle$	0 1	1 1	2 1	2 2 (2 4 if p = 3)
$L^{f}_{1 3}$	$\langle e_1 \rangle$	1 2	0 3	5 0	0 7
$L_{1 3}^j$	$\langle X \rangle$	1 0	0 3	5 0	0 7

Invariants for Lie superalgebras of sdim = (1|3).

Dimension 4: the classification. Lie superalgebras.

Theorem

The classification of 4-dimensional nilpotent Lie superalgebras over an algebraically closed field of characteristic different from 2 is given by:

$$\begin{split} & \underline{sdim(L) = (0|4)}: \ L = \langle 0|x_1, x_2, x_3, x_4 \rangle \\ & \overline{l_{0|4}^1}: \ [\cdot, \cdot] = 0. \\ & \underline{sdim(L) = (1|3)}: \ L = \langle x_1|x_2, x_3, x_4 \rangle \\ & \overline{l_{1|3}^1} = (\mathbf{L}_{1|3}^{\mathbf{a}}): \ abelian; \\ & \overline{l_{1|3}^2} = (\mathbf{L}_{1|3}^{\mathbf{b}}): \ [x_1, x_3] = x_4; \\ & \overline{l_{1|3}^3} = (\mathbf{L}_{1|3}^{\mathbf{c}}): \ [x_2, x_3] = x_1; \\ & \overline{l_{1|3}^4} = (\mathbf{L}_{1|3}^{\mathbf{c}}): \ [x_1, x_2] = x_3, \ [x_1, x_3] = x_4; \\ & \overline{l_{1|3}^5} = (\mathbf{L}_{1|3}^{\mathbf{c}}): \ [x_3, x_3] = x_1; \\ & \overline{l_{1|3}^5} = (\mathbf{L}_{1|3}^{\mathbf{c}}): \ [x_2, x_2] = x_1, \ [x_3, x_4] = x_1. \\ & \underline{sdim(L) = (2|2)}: \ L = \langle x_1, x_2|x_3, x_4 \rangle \\ & \overline{l_{2|2}^1} = (\mathbf{L}_{2|2}^{\mathbf{b}}): \ [x_3, x_3] = x_2; \\ & \overline{l_{3}^2} = (\mathbf{L}_{2|2}^{\mathbf{c}}): \ [x_3, x_3] = x_2, \ [x_3, x_4] = x_1; \\ & \overline{l_{2|2}^5} = (\mathbf{L}_{2|2}^{\mathbf{c}}): \ [x_1, x_3] = x_4; \\ & \overline{l_{2|2}^5} = (\mathbf{L}_{2|2}^{\mathbf{c}}): \ [x_1, x_3] = x_4; \\ & \overline{l_{2|2}^5} = (\mathbf{L}_{2|2}^{\mathbf{c}}): \ [x_1, x_3] = x_4; \\ & \overline{l_{2|2}^5} = (\mathbf{L}_{2|2}^{\mathbf{c}}): \ [x_4, x_4] = x_2. \\ & \overline{l_{2|2}^5} = (\mathbf{L}_{2|2}^{\mathbf{c}}): \ [x_4, x_4] = x_1. \\ \end{split}$$

$$\begin{split} & \underline{sdim}(L) = (3|1); \ L = \langle x_1, x_2, x_3 | x_4 \rangle \\ & \overline{L_{3|1}^1} \ (= L_{3|1}^a); \ abelian; \\ & \overline{L_{3|1}^2} \ (= L_{3|1}^b); \ [x_1, x_2] = x_3; \\ & \overline{L_{3|1}^3} \ (= L_{3|1}^c); \ [x_2, x_2] = x_3; \\ & \overline{L_{3|1}^4} \ (= L_{3|1}^d); \ [x_1, x_2] = [x_3, x_4] = x_3 \\ & \underline{sdim}(L) = (4|0); \ L = \langle x_1, x_2, x_3, x_4 | 0 \rangle \\ & \overline{L_{4|0}^1} \ : \ abelian; \\ & \overline{L_{4|0}^2} \ : \ [x_1, x_2] = x_3; \\ & \overline{L_{4|0}^3} \ : \ [x_1, x_2] = x_4; \\ & \overline{L_{4|0}^3} \ : \ [x_1, x_2] = x_4; \\ & \overline{L_{4|0}^3} \ : \ [x_1, x_2] = x_4; \\ & \overline{L_{4|0}^3} \ : \ x_1, x_2] = x_4; \\$$

• Suppose that $L = L_{\bar{0}} \oplus L_{\bar{1}}$ is a *p*-nilpotent restricted Lie superalgebra. Then $L_{\bar{0}}$ is a *p*-nilpotent restricted Lie algebra with a *p*-map $(\cdot)^{[p]}$.

- Suppose that $L = L_{\bar{0}} \oplus L_{\bar{1}}$ is a *p*-nilpotent restricted Lie superalgebra. Then $L_{\bar{0}}$ is a *p*-nilpotent restricted Lie algebra with a *p*-map $(\cdot)^{[p]}$.
- The classification of 4-dimensional restricted Lie algebras has been achieved by Schneider-Usefi.

- Suppose that $L = L_{\bar{0}} \oplus L_{\bar{1}}$ is a *p*-nilpotent restricted Lie superalgebra. Then $L_{\bar{0}}$ is a *p*-nilpotent restricted Lie algebra with a *p*-map $(\cdot)^{[p]}$.
- The classification of 4-dimensional restricted Lie algebras has been achieved by Schneider-Usefi.
- We only have to check whether these *p*-maps satisfy

$$\operatorname{ad}_{e_i}^p(f_j) = \operatorname{ad}_{e_i^{[p]}}(f_j),$$

 $\forall e_i$ basis elements of $L_{\overline{0}}$, $\forall f_i$ basis elements of $L_{\overline{1}}$.

Theorem

The p-nilpotent structures on nilpotent Lie superalgebras of total dimension 4 with dim $(L_{\bar{1}}) > 0$ are given by:

• sdim(L) = (0|4): none. • $sdim(L) = (1|3): x_1^{[p]} = 0.$ • sdim(L) = (2|2): $x_1^{[p]_1} = x_2^{[p]_1} = 0;$ $x_1^{[p]_2} = x_2, \ x_2^{[p]_2} = 0.$ • sdim(L) = (3|1): Case L₀ abelian: * $x_1^{[p]_1} = x_2^{[p]_1} = x_3^{[p]_1} = 0;$ * $x_1^{[p]_2} = x_2, \ x_2^{[p]_2} = x_3^{[p]_2} = 0.$ * $x_1^{[p]_3} = x_2, \ x_2^{[p]_3} = x_3, \ x_2^{[p]_3} = 0.$ • Case $L_{\bar{0}} \cong L^2_{3|0} = \langle x_1, x_2, x_3; [x_1, x_2] = x_3 \rangle$: * $x_1^{[p]_4} = x_2^{[p]_4} = x_2^{[p]_4} = 0;$ * $x_1^{[p]_5} = x_3, \ x_2^{[p]_5} = x_2^{[p]_5} = 0.$

Merci pour votre attention!