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Outline of the talk

@ Restricted Poisson and Lie-Rinehart algebras

© Restricted cohomology for p = 2

© A comparison between the cohomologies

2/24



Restricted Lie algebras

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map (—)["] L— L
satisfying for all x,y € L and for all A € K:

Q ()P = APxlP; i B
p terms L-‘nnﬁ
(sl — )
9 I:vap]:[["'[va]vy]f"v.y]" -
p—1 ..
Q (x+ y)[p] = xlPl y[p] + Z si(x, ), Nathan Jacobson (1910-1999)

i=1

with isi(x, y) the coefficient of Z'~* in adgx_jy(x). Such a map (=)' : L — L is called
p-map.
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Restricted Lie algebras

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map (—)["] L— L
satisfying for all x,y € L and for all A € K:

o ()\X)[p] = \Pxlel.

-y
p terms L"‘#
&2

(2] [va[p]] = [["'[va]vy],"' 7_)/],' &m

Q (x+ y)[P] = xlPl y[P] 4 Z si(x, y), Nathan Jacobson (1910-1999)

i=1

with isi(x, y) the coefficient of Z'~* in adgx_jy(x). Such a map (=)' : L — L is called
p-map.

Remark: in the case where p = 2, Condition (3) reduces to

(x+y)F =P P 4 [x y).
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Restricted Lie algebras

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map (—)["] L— L
satisfying for all x,y € L and for all A € K:

Q ()P = APxlP; i B
A"‘g‘ \

p terms
—_— -
9 [va[p]]:[["'[va]vy],"'v.y]" &
p—1 ..
Q (x+ y)[P] = xlPl y[P] 4 Z si(x, y), Nathan Jacobson (1910-1999)
i=1

with isi(x, y) the coefficient of Z'~* in adgx_jy(x). Such a map (=)' : L — L is called
p-map.

Remark: in the case where p = 2, Condition (3) reduces to
O+ ) = x4y 4 ).

Example: any associative algebra A with [a, b] = ab — ba and alP! = a?, Va, b € A.

3/24



Restricted Poisson algebras

Definition (Poisson algebra)

An associative commutative K-algebra (A, -) (not necessarily unital) is called
Poisson algebra if it is equipped with a bilinear map {—, -} : A x A — A such
that (A7 {-, f}) is a Lie algebra and moreover, we have

{x-y,z} =x-{y,z} +y - {x,z}, VYx,y,z€ A (1)
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Restricted Poisson algebras

Definition (Poisson algebra)

An associative commutative K-algebra (A, -) (not necessarily unital) is called
Poisson algebra if it is equipped with a bilinear map {—, -} : A x A — A such
that (A, {-, f}) is a Lie algebra and moreover, we have

{x-y,z} =x-{y,z} +y - {x,z}, VYx,y,z€ A (1)

Question: in the case where A is restricted, is there a compatibility between the
p-map and the associative product of A?
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Restricted Poisson algebras

Bezrukavnikov and Kaledin, 2008 (p > 3):

(xy)Pr = xPy Pt 4 yPxiP} 4 0 (x,y), Vx,y € A, (2)

where

So(x,y) = (" +y7) D Sf(x7y)—% Yo ostEaN+ Y s+ 20).

1<i<p—1 1<i<p—1 1<i<p—1
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Restricted Poisson algebras

Bezrukavnikov and Kaledin, 2008 (p > 3):

(xy) P = xPytPY 1 yPxtPl 1 0 (x,y), Vx,y € A, (2)
where
1
Pplcy) = (Y)Y sloy) =5 Yo sty D shE 7 2x).
1<i<p—1 1<i<p—1 1<i<p—1

Bao, Ye and Zhang, 2017 (p > 3): Equation (2) is equivalent to

()P = 2xPx{P} yx € A (3)J
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Restricted Poisson algebras

Definition (Restricted Poisson algebra)

A Poisson algebra (A, -,{—, —}) over a field of characteristic p = 2 is called
restricted Poisson algebra if

o (A {—,—},(—)#) is a restricted Lie algebra;
@ we have
(Xy){2} — 32yl 242 xy{x,y}, Vx,y € A. (4)
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Restricted Poisson algebras

Definition (Restricted Poisson algebra)
A Poisson algebra (A, -, {—, —}) over a field of characteristic p = 2 is called
restricted Poisson algebra if
o (A {—,—},(—)#) is a restricted Lie algebra;
@ we have
00) =2y 4 2 4 xy{x, v}, Vx,y € A, (4)

@ This definition appeared already in Petrogradsky-Shestakov, Journal of
Algebra 574 (2021).

o Example: the 3-dimensional restricted Lie algebra L spanned by e;, e, 3
with
> the bracket [es, €3] = e;
» the 2-map e£2] = e3;
> the associative commutative product e;e; = e;.
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Restricted Lie-Rinehart algebras

Definition (Dokas)

A restricted Lie-Rinehart algebra in characteristic 2 is a triple (A, L, ), where
@ A is an associative commutative algebra;
o (L,[—,—],(—)®) is a restricted Lie algebra that is also an A-module;

@ 0: L — Der(A) is an A-linear restricted Lie algebras morphism satisfying for
all x,y € L and for all a € A:

[x,ay] = alx, y] + 0(x)(a)y; and (5)
(ax)® = 22x 1 g(ax)(a)x. (6)

Example: A associative commutative algebra. Take L = Der(A) and 6 = id.
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Some constructions

Proposition

Let (A, L,0) be a restricted Lie-Rinehart algebra. Then, the tuple
(A oL {-,—-} (—){2}) is a restricted Poisson algebra, where

(a+x)-(b+y) = ab+ay+ bx; Va,b € A, Vx,y € L;
{a+x,b+y} [x,yle +0(x)(b) + 0(y)(a), Va,beA, Vx,y €L, @)
(a+x)# = xB4g(x)(a), Va€ A, Vx e L
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Some constructions

Proposition

Let (A, L,0) be a restricted Lie-Rinehart algebra. Then, the tuple
(A oL {-,—-} (—){2}) is a restricted Poisson algebra, where

(a+x)-(b+y) = ab+ay+ bx; Va,b € A, Vx,y € L;
{a+x,b+y} = [x,ylc+0(x)(b)+06(y)(a), VabeA Vx,y €l @)
(a+x)# = xB4g(x)(a), Vae A, Vx e L.
Proposition

Let (A, 1) be an associative algebra and let pie = p+ ., t'u; be a formal deformation
of . Then : a

o {a, b} := ui(a, b) + ui(b, a) is an ordinary Poisson bracket on A;

@ if u(a®, b) = 0 and po(a?, b) = po(b, a®) Ya, b € A, then (A, {—, —},wy,) is a
restricted Poisson algebra, where w,,(a) = u1i(a, a).
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Restricted cohomology, p = 2

Let (L,[—, =], (—)@) be a restricted Lie algebra and let M be a restricted
L-module. We set
CO

res

C].

res

(L; M) := Ces(L; M);
(L; M) := Clg(L; M).
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Restricted cohomology, p = 2

Let (L,[—, =], (—)@) be a restricted Lie algebra and let M be a restricted
L-module. We set

Cos(Li M) == Cg(L; M);
CL(L; M) := Cly(L; M).

res

Let n > 2, ’996 Cle(LM), w: L@ A"2L — M,‘/\ cKand x,2, -,z 1 € L.
The pair (¢,w) is a n-cochain of the restricted cohomology if

W(AX, Z2, -+ 5 Zn1) = Nw(X, 22, , Zn_1) (8)

Wwx+y,z2, ,zno1) = w(x, 22,y Zn1) +wW(Y, 22, ,Zn_1) (9)
+ (%, ¥, 22, - 5 Za-1),

(z2,+ yZp—1) = w(—, 22, ,Zp—1) is linear. (10)

We denote by C2(L, M) the space of n-cochains of L with values in M.
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Restricted cohomology, p = 2
For n > 2, the coboundary maps d= : C2(L; M) — CEY(L; M) are given by

dies(0,w) = (dip (), 8"(w)),

0"w(x, 2z, -+ ,2p) =X (X, 22, -+, zn)—i—Zz, w(x, 22,y 2, 4 2Zn)

+()0(X[2]7227"’ 7ZI1)+Z()0([X7ZI']3X7227"' aé\ia"' 72")

+ Z W(Xa[zivzj]aZZa"'72i7"'52j7"'72n)-
2<i<j<n
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Restricted cohomology, p = 2
For n > 2, the coboundary maps d= : C2(L; M) — CEY(L; M) are given by

dies(0,w) = (dip (), 8"(w)),

0"w(x, 2z, -+ ,2p) =X (X, 22, -+, zn)—i—Zz, w(x, 22,y 2, 4 2Zn)

+()0(X[2]7227"’ 7ZI1)+Z()0([X7ZI']3X7227"' aé\ia"' 72")

+ Z w(Xa[zivzj]azZa"'72i7"'52j7"'7zn)-
2<i<j<n

For n= 0,1, we define d2 =

= d%g and
dres * Cres(Li M) = Co(L, M)
© (dCEcp,5 ©), where Sto(x) = go(x[z])+x ~o(x), ¥x € L.
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Restricted cohomology, p = 2

For n = 2, the cocycle condition on the second component reads

x-o(x,2) + z-w(x) + p(x?, 2) + o([x, 2], x) =0, Vx,z € L
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Restricted cohomology, p = 2

For n = 2, the cocycle condition on the second component reads

x-o(x,2) + z-w(x) + p(x?, 2) + o([x, 2], x) =0, Vx,z € L

Theorem
Q Let (p,w) € C(L; M). Then (dZe(p),0"(w))€ Cait(L; M);
e 5n+1 ° 5n — 0].
Q@ HL.(L M) :=2Z (L, M)/BL(L; M) are well-defined, with

res

Z5(L; M) = Ker(djs) the restricted n-cocycles;

Bhi(L; M) = Im(di ") the restricted n-coboundaries.

11/24



Restricted cohomology for Lie-Rinehart algebras, p = 2

Let (A, L,0) be a restricted Lie-Rinehart algebra in characteristic 2 and let M be a
restricted Lie-Rinehart module:

x(am) = (ax)m+ 0.(x)(a)m, Vx € L, Ya€ A, Vm € M.
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Restricted cohomology for Lie-Rinehart algebras, p = 2

Let (A, L,0) be a restricted Lie-Rinehart algebra in characteristic 2 and let M be a
restricted Lie-Rinehart module:

x(am) = (ax)m+ 0.(x)(a)m, Vx € L, Ya€ A, Vm € M.

For n=0,1, we set CPx(L; M) := M and Cli(L; M) := Homa(ALL, M).

12/24




Restricted cohomology for Lie-Rinehart algebras, p = 2

Let (A, L,0) be a restricted Lie-Rinehart algebra in characteristic 2 and let M be a
restricted Lie-Rinehart module:

x(am) = (ax)m+ 0.(x)(a)m, Vx € L, Ya€ A, Vm € M.

For n=0,1, we set CPx(L; M) := M and Cli(L; M) := Homa(ALL, M).

For n > 2, ('x(L; M) consists of pairs (p,w) € ClL,(L; M), where
¢ € Homa(A"L, M) and
W(BX,Zz,"' 7Zn—1) ZQQW(X7Z27"' 7Zn—1)a (11)
W(Xv 22, ,aZj, ,Zn,]_) = aw(X7227 gyt ,an].), (12)

for all x,z,--- ,z,_1 € L and for all a € A.

Proposition (Bouarroudj-E.-Liu)

Define | di'y = djs\cp. (m)- | Then, din (CPR(L; M)) e CIEY(L; M) and the spaces
HI R (L; M) are well-defined.
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Application: abelian extensions

Let (A, L,0;) be a restricted Lie-Rinehart algebra and let (A, M, 0y) be a strongly
abelian restricted Lie-Rinehart algebra. An abelian extension of (A, L,0;) by
(A, M, 0p) is a short exact sequence of restricted Lie-Rinehart algebras

0 — (A,M,0) - (A E,0g) — (A L,6) — 0. (13)

13/24



Application: abelian extensions

Let (A, L,0;) be a restricted Lie-Rinehart algebra and let (A, M, 0y) be a strongly
abelian restricted Lie-Rinehart algebra. An abelian extension of (A, L,0;) by
(A, M, 0p) is a short exact sequence of restricted Lie-Rinehart algebras

0 — (A, M,0) — (A, E,0g) — (A, L,6) — 0. (13)
[X+u7y+V]E = [XaY]LJF(P(Xv)/)JFX'VJFY'Uv \V/X7y€La VU,VEM;
(x+u)lle = xPl 4 w(x)+x-u, Vx e L, Yue M,
Oe(x+u) = 0.(x), Vx €L, Yue M.
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Application: abelian extensions

Let (A, L,0;) be a restricted Lie-Rinehart algebra and let (A, M, 0y) be a strongly
abelian restricted Lie-Rinehart algebra. An abelian extension of (A, L,0;) by
(A, M, 0p) is a short exact sequence of restricted Lie-Rinehart algebras

0 — (A, M,0) — (A, E,0g) — (A, L,6) — 0. (13)
[X+u7y+V]E = [XaY]L+<P(X7Y)+X'V+Y'U7 \V/X7y€La VU,VEM;
(x+u)lle = xPl 4 w(x)+x-u, Vx e L, Yue M,
Oe(x+u) = 0.(x), Vx €L, Yue M.

Theorem (Bouarroudj-E.-Liu)

Let (A, L,0,) be a restricted Lie-Rinehart algebra such that L is projective as
A-module. Then, the equivalence classes of abelian extensions of (A,L,6,) by a

strongly abelian restricted Lie-Rinehart algebra (A, M, 0y) are classified by
HER(L; M).

= = = = =
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Restricted cohomology for Poisson algebras, p = 2

Let A be a restricted Poisson algebra in characteristic 2.
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Restricted cohomology for Poisson algebras, p = 2
Let A be a restricted Poisson algebra in characteristic 2.

For n= 0,1, we set C3,(A) := A and C},(A) := X1(A).
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Restricted cohomology for Poisson algebras, p = 2
Let A be a restricted Poisson algebra in characteristic 2.
For n= 0,1, we set C3,(A) := A and C},(A) := X1(A).
For n > 2, B, (A) consists of pairs (¢, w) € (L (L; M) where ¢ € X"(A) and
w(Xy7227 e aZn—l) = X2W(y7227 T 7Zn—1) +y2w(Xa 22, 7Zn—1) (14)
+ X)/SO(XJ/; 22, aZn—l)a
w(X7227 e ,Z,‘Z’-/, o azn—l) = Z,'LL)(X, 22, 7Zi/7 o azn—l) (15)
+ Z,-/LU(X7227 s Zjy 7Zn—1)-

forall x,y,z, -+ ,z,_1 € A.

Proposition (Bouarroudj-E.-Liu)

Define | dp, = dies|ca, (a) | Then, dis (CEA(A))€ CoLM(A) and the spaces
HE A (A) are well-defined.
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Application: formal deformations

Let (A, {—,—},(—)?}) be a restricted Poisson algebra. Let A} := A[[t]]/t"+!
and consider

k K
Ky == {_7 _} + Z ti,u,-, and WKy = (_){2} + Z t! wj, (16)
izl i>1

where (u;,w;) € C3A(A) Vi > 1.

A tuple (Aﬁ, : u(k),w(k)) is called a formal deformation of order k of the restricted
Poisson algebra (A, “{=,-} (7){2}) if (AL, k), W(k)) is a restricted Lie algebra.

Since (i, w;i) € C3x(A) Vi > 1, (AL, -, k), Wik is a restricted Poisson algebra.
Iz PA ko *s H(k)> W (k)
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Application: formal deformations

Let (A, {—,—},(—)?}) be a restricted Poisson algebra. Let A} := A[[t]]/t"+!
and consider

k k
pog ={— =Y+ _tu, and  wry =)+ tw, (16)
i>1 i>1

where (u;,w;) € C3A(A) Vi > 1.

A tuple (Aﬁ, 5 H(k)> w(k)) is called a formal deformation of order k of the restricted
Poisson algebra (A, “{=,-} (7){2}) if (AL, k), W(k)) is a restricted Lie algebra.

Since (i, w;i) € CA(A) Vi > 1, (AL, -, k), w(k)) is a restricted Poisson algebra.

Theorem (Bouarroudj-E.-Liu)

Let (A,-,{—,—},(—)?}) be a restricted Poisson algebra. Then, the second

cohomology space H2, (A) classifies (up to equivalence) the deformations of
(A {-, -}, (—){2}) of order 1.

™ = —_ = = Sakel
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Example: Heisenberg
Consider the 3-dimensional restricted Heisenberg Lie algebra h spanned by
elements ey, e, 3 with

[e, ] =6, (-)F =0, ee=es.
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Example: Heisenberg

Consider the 3-dimensional restricted Heisenberg Lie algebra h spanned by
elements ey, e, 3 with

[e, ] =6, (-)F =0, ee=es.

Hpa(h) =Span{e; @ ef + e, @ €5, e @ ef + e3® €5}
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Example: Heisenberg

Consider the 3-dimensional restricted Heisenberg Lie algebra h spanned by
elements ey, e, 3 with

[e, ] =6, (-)F =0, ee=es.

Hpa(h) =Span{e; @ ef + e, @ €5, e @ ef + e3® €5}

HEA (h) = {(#1,0), (¢2,0)},

where

pr=e @ (e Ne)+ e @ (e Aes);
pa=e @ (ef ANey) +e3@(ef Ne3)

16 /24



Example: analogs of “classical Poisson” pop(2n, N)

Let kK > 1. The associative commutative algebra of divided powers in k variables
x = (x1, - ,xk) is defined for N := (ny,--- ,ng), where ng >0, V1 <s <k, by
K(x; N) := Span{x(D = xl(il) . ~x,(<ik), (i) = (i, ,ik), 0<is < p™ —1}.

The multiplication is given by
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Example: analogs of “classical Poisson” pop(2n, N)

Let kK > 1. The associative commutative algebra of divided powers in k variables
x = (x1, - ,xk) is defined for N := (ny,--- ,ng), where ng >0, V1 <s <k, by
K(x; N) := Span{x(D = xl(il) . ~x,(<"k), (i) = (i, ,ik), 0<is < p™ —1}.

The multiplication is given by

For n > 1, define
pon(2n, N) := {f € K[p;, q;; N], 1 < i < n},

endowed with the Lie bracket

_3(2f 28 _0r s
{f»g}”'_;<6p;3q; aq,-ap,->~ (18)

= = = = =

17/24



Example: analogs of “classical Poisson” pop(2n, N)

Lemma

The space pop(2n,1) is a restricted Poisson algebra with the bracket {—, —}n and
the 2-map

(pig))*? = 6 pig;.
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Example: analogs of “classical Poisson” pop(2n, N)

Lemma

The space pop(2n,1) is a restricted Poisson algebra with the bracket {—, —}n and
the 2-map

{2

(pig))*? = 6 pig;.

Proposition
We have H}, (pon(2,1))= 0 and H3, (pon(2,1))= Span{(0,w)}, where

w(1) = 1, w(pr) = wlgr) = w(prar) = O.
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Example: analogs of “classical Poisson” pop(2n, N)

Lemma

The space pop(2n,1) is a restricted Poisson algebra with the bracket {—, —}n and
the 2-map

(pig))*? = 6 pig;.

Proposition
We have H}, (pon(2,1))= 0 and H3, (pon(2,1))= Span{(0,w)}, where

w(l) =1, w(p1) = w(q1) = w(prq1) = 0.

To compare:
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A comparison between the cohomologies

Kahler differentials.

Let A be an unital associative commutative K-algebra. The module of Kahler
differentials of A, denoted by Q(A), is the free A-module with

@ generators: dx, x € A;

o relations:

d(xy) =ydx+xdy; dix+y)=dx+dy; dX=0, Vx,y €A VAeK.

19/24



A comparison between the cohomologies

Kahler differentials.

Let A be an unital associative commutative K-algebra. The module of Kahler
differentials of A, denoted by Q(A), is the free A-module with

@ generators: dx, x € A;

o relations:

d(xy) =ydx+xdy; d(x+y)=dx+dy; dA=0, V¥x,y €A VieK.
@ universal property:
A— = Ql(A), (19)
derivation Dl e ‘
-3 D A-linear
AL

where A is seen as a module over itself using its multiplication.
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A comparison between the cohomologies

Kahler differentials.

Let A be an unital associative commutative K-algebra. The module of Kahler
differentials of A, denoted by Q(A), is the free A-module with

@ generators: dx, x € A;

o relations:

d(xy) =ydx+xdy; d(x+y)=dx+dy; dA=0, V¥x,y €A VieK.
@ universal property:

d

A———QY(A), (19)
derivation Dl o .
31 D A-linear
AL

where A is seen as a module over itself using its multiplication.
By this universal property, we have a natural isomorphism of A-modules

Der(A) = Homa(Q(A), A). (20)

™7 ™ - - = o

19/24



Huebschmann's theorem, p = 2

Let (A,-,{—,—}) be an ordinary Poisson algebra and Q!(A) its module of Kahler
differentials, seen as a Lie algebra with the bracket

[xdu,ydv]guay == x{u,y}dv+y{x,vidutxyd{u,v}, Vx,y,u,veA (21)

20 /24



Huebschmann's theorem, p = 2

Let (A,-,{—,—}) be an ordinary Poisson algebra and Q!(A) its module of Kahler
differentials, seen as a Lie algebra with the bracket

[xdu,ydv]guay == x{u,y}dv+y{x,vidutxyd{u,v}, Vx,y,u,veA (21)
Then, (A, Q(A), n*) is a Lie-Rinehart algebra, with

7 : Q' (A) — Homa(Q'(A), A)= Der(A), xdur x{u,—}. (22)
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Huebschmann's theorem, p = 2

Let (A,-,{—,—}) be an ordinary Poisson algebra and Q!(A) its module of Kahler
differentials, seen as a Lie algebra with the bracket

[xdu,ydv]guay == x{u,y}dv+y{x,vidutxyd{u,v}, Vx,y,u,veA (21)
Then, (A, Q*(A), ") is a Lie-Rinehart algebra, with

7 : Q' (A) — Homa(Q'(A), A)= Der(A), xdur x{u,—}. (22)

Theorem (Bouarroudj-E.-Liu)
Let (A, -, {—,—},(—)") be a restricted Poisson algebra in characteristic 2, and
suppose that the module of Kahler differentials is free as an A-module. Define a
map (=)@ : Q1(A) — Q'(A) by

(xdu)® = x2d(ut?) + x{u,x}du, ¥ xdue Q(A). (23)

Then, (QX(A), [—, —la1(a), (—)?) is a restricted Lie algebra and (A, Q'(A), *) is
a restricted Lie-Rinehart algebra.

A = - = = o}

20 /24



Kahler forms
Let k > 0 and consider the A-modules Q(A) := ALQ'(A), k > 1 and Q°(A) := A, and
Q°*(4) = P a*(A).

k>0

The map d : A — Q'(A) extends a K-linear map A®d : A°A — Q°(A) by the formula
A d(ur A Au)i=du A Aduk, Vi, uk € A (24)
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Kahler forms

Let k > 0 and consider the A-modules Q(A) := ALQ'(A), k > 1 and Q°(A) := A, and
Q°*(4) = P a*(A).
k>0

The map d : A — Q'(A) extends a K-linear map A®d : A°A — Q°(A) by the formula

A d(ur A Au)i=du A Aduk, Vi, uk € A (24)
Universal property:
k
NA—" s 0K(A) (25)
k derivation ¢l B 3| @» e

AL
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Kahler forms

Let k > 0 and consider the A-modules Q(A) := ALQ'(A), k > 1 and Q°(A) := A, and
Q°*(4) = P a*(A).
k>0

The map d : A — Q'(A) extends a K-linear map A®d : A°A — Q°(A) by the formula

A d(ur A Au)i=du A Aduk, Vi, uk € A (24)
Universal property:
AA— N gk (25)
f dervation ¢J, edt c,a”A-linear
AL
As a consequence, we have a natural isomorphism of A-modules:
X¥(A) = Homa(Q(A), A) (26)
and the map ¢ — ¢ induces a natural isomorphism
X°(A) 2 @ Homa(Q4(4), A). (27)
keN
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The comparison theorem, 1/2

Proposition (Bouarroudj-E.-Liu)
For k > 2, let (¢,w) € Ch,(A). Then, there exists an unique map
G QYA @ Q2(A) - A

such that
(P, D) € CLR(Q5(A); A) and & o (d® A2 d) = w,

that is, the following diagram commutes:

k—2
Ao nk—24 98N T 0104y @ Qk-2(A)

LT

A<

where A is seen as a module over itself using its multiplication.
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The comparison theorem, 2/2

Theorem (Bouarroudj-E.-Liu)

Let (A,-,{—,—},(=)#) be a restricted Poisson algebra in characteristic 2. If the
module of the Kihler differential Q(A) is free, then the cohomology complex

(P cialA). a3

n>0

for the restricted Poisson algebra A is isomorphic to the cohomology complex

(@ Cir ( Ql A, dLR)

n>0

for the restricted Lie-Rinehart algebra (A, Q'(A), n%).
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Thank you for your attention

Main reference:
S. Bouarroudj, Q. Ehret, J. Liu,

Cohomology of restricted Poisson algebras in characteristic 2,
arXiv:2504.07601.
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