Restricted Poisson algebras in characteristic 2

Quentin Ehret

Workshop on algebras and applications in mathematical physics

Chern Institute of Mathematics, Tianjin, China

Joint work with Sofiane Bouarroudj (NYU Abu Dhabi) Jiefeng Liu (Northeast Normal University, China)

Outline of the talk

Restricted Poisson and Lie-Rinehart algebras

2 Restricted cohomology for p = 2

3 A comparison between the cohomologies

Restricted Lie algebras

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map $(-)^{[p]}: L \longrightarrow L$ satisfying for all $x, y \in L$ and for all $\lambda \in \mathbb{K}$:

$$[x, y^{[p]}] = [[\cdots [x, y], y], \cdots, y];$$

$$(x+y)^{[p]} = x^{[p]} + y^{[p]} + \sum_{i=1}^{p-1} s_i(x,y),$$

Nathan Jacobson (1910-1999)

with $is_i(x,y)$ the coefficient of Z^{i-1} in $ad_{Zx+y}^{p-1}(x)$. Such a map $(-)^{[p]}:L\longrightarrow L$ is called p-map.

Restricted Lie algebras

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map $(-)^{[p]}: L \longrightarrow L$ satisfying for all $x, y \in L$ and for all $\lambda \in \mathbb{K}$:

$$[x, y^{[p]}] = [[\cdots [x, y], y], \cdots, y];$$

$$(x+y)^{[p]} = x^{[p]} + y^{[p]} + \sum_{i=1}^{p-1} s_i(x,y),$$

Nathan Jacobson (1910-1999)

with is_i(x,y) the coefficient of Z^{i-1} in $\operatorname{ad}_{Zx+y}^{p-1}(x)$. Such a map $(-)^{[p]}:L\longrightarrow L$ is called p-map.

Remark: in the case where p = 2, Condition (3) reduces to

$$(x + y)^{[2]} = x^{[2]} + y^{[2]} + [x, y].$$

Restricted Lie algebras

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map $(-)^{[p]}: L \longrightarrow L$ satisfying for all $x, y \in L$ and for all $\lambda \in \mathbb{K}$:

$$[x, y^{[p]}] = [[\cdots [x, y], y], \cdots, y];$$

$$(x+y)^{[p]} = x^{[p]} + y^{[p]} + \sum_{i=1}^{p-1} s_i(x,y),$$

Nathan Jacobson (1910-1999)

with $is_i(x,y)$ the coefficient of Z^{i-1} in $ad_{Zx+y}^{p-1}(x)$. Such a map $(-)^{[p]}:L\longrightarrow L$ is called p-map.

Remark: in the case where p = 2, Condition (3) reduces to

$$(x+y)^{[2]} = x^{[2]} + y^{[2]} + [x, y].$$

Example: any associative algebra A with [a,b]=ab-ba and $a^{[p]}=a^p$, $\forall a,b\in A$

Definition (Poisson algebra)

An associative commutative \mathbb{K} -algebra (A,\cdot) (not necessarily unital) is called **Poisson algebra** if it is equipped with a bilinear map $\{-,-\}:A\times A\to A$ such that $(A,\{-,-\})$ is a Lie algebra and moreover, we have

$$\{x \cdot y, z\} = x \cdot \{y, z\} + y \cdot \{x, z\}, \quad \forall x, y, z \in A.$$
 (1)

Definition (Poisson algebra)

An associative commutative \mathbb{K} -algebra (A,\cdot) (not necessarily unital) is called **Poisson algebra** if it is equipped with a bilinear map $\{-,-\}:A\times A\to A$ such that $(A,\{-,-\})$ is a Lie algebra and moreover, we have

$$\{x \cdot y, z\} = x \cdot \{y, z\} + y \cdot \{x, z\}, \quad \forall x, y, z \in A.$$
 (1)

Question: in the case where A is restricted, is there a compatibility between the p-map and the associative product of A?

Bezrukavnikov and Kaledin, 2008 ($p \ge 3$):

$$(xy)^{\{p\}} = x^p y^{\{p\}} + y^p x^{\{p\}} + \Phi_p(x, y), \ \forall x, y \in A,$$
 (2)

where

$$\Phi_{p}(x,y) = (x^{p} + y^{p}) \sum_{1 \leq i \leq p-1} s_{i}(x,y) - \frac{1}{2} \sum_{1 \leq i \leq p-1} s_{i}(x^{2},y^{2}) + \sum_{1 \leq i \leq p-1} s_{i}(x^{2} + y^{2}, 2xy).$$

Bezrukavnikov and Kaledin, 2008 ($p \ge 3$):

$$(xy)^{\{p\}} = x^p y^{\{p\}} + y^p x^{\{p\}} + \Phi_p(x, y), \ \forall x, y \in A,$$
 (2)

where

$$\Phi_p(x,y) = (x^p + y^p) \sum_{1 \le i \le p-1} s_i(x,y) - \frac{1}{2} \sum_{1 \le i \le p-1} s_i(x^2,y^2) + \sum_{1 \le i \le p-1} s_i(x^2 + y^2, 2xy).$$

Bao, Ye and Zhang, 2017 ($p \ge 3$): Equation (2) is equivalent to

$$(x^2)^{\{p\}} = 2x^p x^{\{p\}}, \quad \forall x \in A.$$
 (3)

Definition (Restricted Poisson algebra)

A Poisson algebra $(A, \cdot, \{-, -\})$ over a field of characteristic p = 2 is called **restricted Poisson algebra** if

- $(A, \{-, -\}, (-)^{\{2\}})$ is a restricted Lie algebra;
- we have

$$(xy)^{\{2\}} = x^2 y^{\{2\}} + y^2 x^{\{2\}} + xy\{x, y\}, \ \forall x, y \in A.$$
 (4)

Definition (Restricted Poisson algebra)

A Poisson algebra $(A,\cdot,\{-,-\})$ over a field of characteristic p=2 is called **restricted Poisson algebra** if

- $(A, \{-, -\}, (-)^{\{2\}})$ is a restricted Lie algebra;
- we have

$$(xy)^{\{2\}} = x^2y^{\{2\}} + y^2x^{\{2\}} + xy\{x,y\}, \ \forall x,y \in A.$$

- This definition appeared already in Petrogradsky-Shestakov, Journal of Algebra 574 (2021).
- **Example**: the 3-dimensional restricted Lie algebra L spanned by e_1, e_2, e_3 with
 - the bracket [e₂, e₃] = e₂;
 - the 2-map $e_3^{[2]} = e_3$;
 - the associative commutative product $e_1e_1=e_1$.

Restricted Lie-Rinehart algebras

Definition (Dokas)

A **restricted Lie-Rinehart algebra** in characteristic 2 is a triple (A, L, θ) , where

- A is an associative commutative algebra;
- $(L, [-, -], (-)^{[2]})$ is a restricted Lie algebra that is also an A-module;
- $\theta: L \to \text{Der}(A)$ is an A-linear restricted Lie algebras morphism satisfying for all $x, y \in L$ and for all $a \in A$:

$$[x, ay] = a[x, y] + \theta(x)(a)y; \text{ and}$$
 (5)

$$(ax)^{[2]} = a^2 x^{[2]} + \theta(ax)(a)x.$$
 (6)

Example: A associative commutative algebra. Take L = Der(A) and $\theta = id$.

Some constructions

Proposition

Let (A, L, θ) be a restricted Lie-Rinehart algebra. Then, the tuple $(A \oplus L, \cdot, \{-, -\}, (-)^{\{2\}})$ is a restricted Poisson algebra, where

$$(a+x)\cdot(b+y) := ab+ay+bx; \qquad \forall a,b \in A, \ \forall x,y \in L;$$

$$\{a+x,b+y\} := [x,y]_{L} + \theta(x)(b) + \theta(y)(a), \quad \forall a,b \in A, \ \forall x,y \in L;$$

$$(a+x)^{\{2\}} := x^{[2]_{L}} + \theta(x)(a), \qquad \forall a \in A, \ \forall x \in L.$$

$$(7)$$

Some constructions

Proposition

Let (A, L, θ) be a restricted Lie-Rinehart algebra. Then, the tuple $(A \oplus L, \cdot, \{-, -\}, (-)^{\{2\}})$ is a restricted Poisson algebra, where

$$(a+x)\cdot(b+y) := ab+ay+bx; \qquad \forall a,b \in A, \ \forall x,y \in L;$$

$$\{a+x,b+y\} := [x,y]_{L} + \theta(x)(b) + \theta(y)(a), \quad \forall a,b \in A, \ \forall x,y \in L;$$

$$(a+x)^{\{2\}} := x^{[2]_{L}} + \theta(x)(a), \qquad \forall a \in A, \ \forall x \in L.$$

$$(7)$$

Proposition

Let (A, μ) be an associative algebra and let $\mu_t = \mu + \sum_{i \geq 1} t^i \mu_i$ be a formal deformation of μ . Then :

- $\{a,b\} := \mu_1(a,b) + \mu_1(b,a)$ is an ordinary Poisson bracket on A;
- if $\mu_1(a^2, b) = 0$ and $\mu_2(a^2, b) = \mu_2(b, a^2) \ \forall a, b \in A$, then $(A, \{-, -\}, \omega_{\mu_1})$ is a restricted Poisson algebra, where $\omega_{\mu_1}(a) = \mu_1(a, a)$.

Let $(L, [-, -], (-)^{[2]})$ be a restricted Lie algebra and let M be a restricted L-module. We set

$$C_{res}^{0}(L; M) := C_{CE}^{0}(L; M);$$

 $C_{res}^{1}(L; M) := C_{CE}^{1}(L; M).$

Let $(L, [-, -], (-)^{[2]})$ be a restricted Lie algebra and let M be a restricted L-module. We set

$$C_{res}^{0}(L; M) := C_{CE}^{0}(L; M);$$

 $C_{res}^{1}(L; M) := C_{CE}^{1}(L; M).$

Let $n \geq 2$, $\varphi \in C_{CE}^n(L, M)$, $\omega : L \otimes \wedge^{n-2}L \to M$, $\lambda \in \mathbb{K}$ and $x, z_2, \dots, z_{n-1} \in L$. The pair (φ, ω) is a *n*-cochain of the restricted cohomology if

$$\omega(\lambda x, z_{2}, \dots, z_{n-1}) = \lambda^{2} \omega(x, z_{2}, \dots, z_{n-1})$$

$$\omega(x + y, z_{2}, \dots, z_{n-1}) = \omega(x, z_{2}, \dots, z_{n-1}) + \omega(y, z_{2}, \dots, z_{n-1})$$

$$+ \varphi(x, y, z_{2}, \dots, z_{n-1}),$$

$$(z_{2}, \dots, z_{n-1}) \mapsto \omega(-, z_{2}, \dots, z_{n-1})$$
 is linear. (10)

We denote by $C_{res}^n(L, M)$ the space of *n*-cochains of L with values in M.

For $n \geq 2$, the coboundary maps $d_{\text{res}}^n : C_{\text{res}}^n(L;M) \to C_{\text{res}}^{n+1}(L;M)$ are given by $d_{\text{res}}^n(\varphi,\omega) = (d_{\text{CE}}^n(\varphi),\delta^n(\omega)),$

$$\delta^{n}\omega(x,z_{2},\cdots,z_{n}):=x\cdot\varphi(x,z_{2},\cdots,z_{n})+\sum_{i=2}^{n}z_{i}\cdot\omega(x,z_{2},\cdots,\hat{z}_{i},\cdots,z_{n})$$

$$+\varphi(x^{[2]},z_{2},\cdots,z_{n})+\sum_{i=2}^{n}\varphi([x,z_{i}],x,z_{2},\cdots,\hat{z}_{i},\cdots,z_{n})$$

$$+\sum_{2\leq i< j\leq n}\omega(x,[z_{i},z_{j}],z_{2},\cdots,\hat{z}_{i},\cdots,\hat{z}_{j},\cdots,z_{n}).$$

For $n \geq 2$, the coboundary maps $d_{\rm res}^n: C_{\rm res}^n(L;M) \to C_{\rm res}^{n+1}(L;M)$ are given by

$$d_{\mathsf{res}}^n(\varphi,\omega) = (d_{\mathrm{CE}}^n(\varphi), \delta^n(\omega)),$$

$$\delta^{n}\omega(x, z_{2}, \dots, z_{n}) := x \cdot \varphi(x, z_{2}, \dots, z_{n}) + \sum_{i=2}^{n} z_{i} \cdot \omega(x, z_{2}, \dots, \hat{z}_{i}, \dots, z_{n})$$

$$+ \varphi(x^{[2]}, z_{2}, \dots, z_{n}) + \sum_{i=2}^{n} \varphi([x, z_{i}], x, z_{2}, \dots, \hat{z}_{i}, \dots, z_{n})$$

$$+ \sum_{2 \leq i < j \leq n} \omega(x, [z_{i}, z_{j}], z_{2}, \dots, \hat{z}_{i}, \dots, \hat{z}_{j}, \dots, z_{n}).$$

For n=0,1, we define $d_{\rm res}^0=d_{\rm CE}^0$ and

$$d_{\mathsf{res}}^1: C^1_{\mathsf{res}}(L; M) \to C^2_{\mathsf{res}}(L, M)$$

$$\varphi \mapsto \left(d_{\mathsf{CE}}^1 \varphi, \delta^1 \varphi\right), \text{ where } \delta^1 \varphi(x) := \varphi(x^{[2]}) + x \cdot \varphi(x), \ \forall x \in L.$$

For n = 2, the cocycle condition on the second component reads

$$x \cdot \varphi(x, z) + z \cdot \omega(x) + \varphi(x^{[2]}, z) + \varphi([x, z], x) = 0, \quad \forall x, z \in L.$$

For n = 2, the cocycle condition on the second component reads

$$x \cdot \varphi(x, z) + z \cdot \omega(x) + \varphi(x^{[2]}, z) + \varphi([x, z], x) = 0, \quad \forall x, z \in L.$$

Theorem

- Let $(\varphi, \omega) \in C^n_{res}(L; M)$. Then $(d^n_{CE}(\varphi), \delta^n(\omega)) \in C^{n+1}_{res}(L; M)$;
- $\bullet \delta^{n+1} \circ \delta^n = 0;$
- - $Z_{res}^n(L; M) = Ker(d_{res}^n)$ the restricted n-cocycles;
 - $B_{res}^n(L;M) = Im(d_{res}^{n-1})$ the restricted n-coboundaries.

Restricted cohomology for Lie-Rinehart algebras, p = 2

Let (A, L, θ) be a restricted Lie-Rinehart algebra in characteristic 2 and let M be a restricted Lie-Rinehart module:

$$x(am) = (ax)m + \theta_L(x)(a)m, \ \forall x \in L, \ \forall a \in A, \ \forall m \in M.$$

Restricted cohomology for Lie-Rinehart algebras, p = 2

Let (A, L, θ) be a restricted Lie-Rinehart algebra in characteristic 2 and let M be a restricted Lie-Rinehart module:

$$x(am) = (ax)m + \theta_L(x)(a)m, \ \forall x \in L, \ \forall a \in A, \ \forall m \in M.$$

For n=0,1, we set $C^0_{\operatorname{LR}}(L;M):=M$ and $C^1_{\operatorname{LR}}(L;M):=\operatorname{\mathsf{Hom}}_{\mathcal{A}}(\wedge^1 L,M).$

Restricted cohomology for Lie-Rinehart algebras, p=2

Let (A, L, θ) be a restricted Lie-Rinehart algebra in characteristic 2 and let M be a restricted Lie-Rinehart module:

$$x(am) = (ax)m + \theta_L(x)(a)m, \ \forall x \in L, \ \forall a \in A, \ \forall m \in M.$$

For n = 0, 1, we set $C^0_{L,R}(L; M) := M$ and $C^1_{L,R}(L; M) := \text{Hom}_A(\wedge^1 L, M)$.

For $n \geq 2$, $C_{LR}^n(L; M)$ consists of pairs $(\varphi, \omega) \in C_{res}^n(L; M)$, where $\varphi \in \operatorname{Hom}_A(\wedge^n L, M)$ and

$$\omega(ax, z_2, \dots, z_{n-1}) = a^2 \omega(x, z_2, \dots, z_{n-1}),$$

$$\omega(x, z_2, \dots, az_i, \dots, z_{n-1}) = a\omega(x, z_2, \dots, z_i, \dots, z_{n-1}),$$

$$(11)$$

for all $x, z_2, \dots, z_{n-1} \in L$ and for all $a \in A$.

Proposition (Bouarroudj-E.-Liu)

 $\textit{Define} \ \boxed{d^n_{\mathrm{LR}} = d^n_{\mathrm{res}|\mathcal{C}^n_{\mathrm{LR}}(L;M)}.} \ \ \textit{Then,} \ d^n_{\mathrm{LR}}\big(\mathcal{C}^n_{\mathrm{LR}}(L;M)\big) \in \mathcal{C}^{n+1}_{\mathrm{LR}}(L;M) \ \textit{and the spaces}$

 $H_{LR}^n(L; M)$ are well-defined.

Application: abelian extensions

Let (A, L, θ_L) be a restricted Lie-Rinehart algebra and let (A, M, θ_M) be a strongly abelian restricted Lie-Rinehart algebra. An *abelian extension* of (A, L, θ_L) by (A, M, θ_M) is a short exact sequence of restricted Lie-Rinehart algebras

$$0 \longrightarrow (A, M, 0) \stackrel{\iota}{\longrightarrow} (A, E, \theta_E) \stackrel{\pi}{\longrightarrow} (A, L, \theta_L) \longrightarrow 0.$$
 (13)

Application: abelian extensions

Let (A, L, θ_L) be a restricted Lie-Rinehart algebra and let (A, M, θ_M) be a strongly abelian restricted Lie-Rinehart algebra. An *abelian extension* of (A, L, θ_L) by (A, M, θ_M) is a short exact sequence of restricted Lie-Rinehart algebras

$$0 \longrightarrow (A, M, 0) \stackrel{\iota}{\longrightarrow} (A, E, \theta_E) \stackrel{\pi}{\longrightarrow} (A, L, \theta_L) \longrightarrow 0.$$
 (13)

$$[x + u, y + v]_E := [x, y]_L + \varphi(x, y) + x \cdot v + y \cdot u, \quad \forall x, y \in L, \ \forall u, v \in M;$$
$$(x + u)^{[2]_E} := x^{[2]_L} + \omega(x) + x \cdot u, \qquad \forall x \in L, \ \forall u \in M;$$
$$\theta_E(x + u) := \theta_L(x), \qquad \forall x \in L, \ \forall u \in M.$$

Application: abelian extensions

Let (A, L, θ_L) be a restricted Lie-Rinehart algebra and let (A, M, θ_M) be a strongly abelian restricted Lie-Rinehart algebra. An *abelian extension* of (A, L, θ_L) by (A, M, θ_M) is a short exact sequence of restricted Lie-Rinehart algebras

$$0 \longrightarrow (A, M, 0) \stackrel{\iota}{\longrightarrow} (A, E, \theta_E) \stackrel{\pi}{\longrightarrow} (A, L, \theta_L) \longrightarrow 0.$$
 (13)

$$[x + u, y + v]_{\mathcal{E}} := [x, y]_{\mathcal{L}} + \varphi(x, y) + x \cdot v + y \cdot u, \quad \forall x, y \in \mathcal{L}, \ \forall u, v \in \mathcal{M};$$
$$(x + u)^{[2]_{\mathcal{E}}} := x^{[2]_{\mathcal{L}}} + \omega(x) + x \cdot u, \qquad \forall x \in \mathcal{L}, \ \forall u \in \mathcal{M};$$
$$\theta_{\mathcal{E}}(x + u) := \theta_{\mathcal{L}}(x), \qquad \forall x \in \mathcal{L}, \ \forall u \in \mathcal{M}.$$

Theorem (Bouarroudj-E.-Liu)

Let (A, L, θ_L) be a restricted Lie-Rinehart algebra such that L is projective as A-module. Then, the equivalence classes of abelian extensions of (A, L, θ_L) by a strongly abelian restricted Lie-Rinehart algebra (A, M, θ_M) are classified by $H^2_{LR}(L; M)$.

Restricted cohomology for Poisson algebras, p = 2

Let A be a restricted Poisson algebra in characteristic 2.

Restricted cohomology for Poisson algebras, p = 2

Let A be a restricted Poisson algebra in characteristic 2.

For n = 0, 1, we set $C_{PA}^0(A) := A$ and $C_{PA}^1(A) := \mathfrak{X}^1(A)$.

Restricted cohomology for Poisson algebras, p = 2

Let A be a restricted Poisson algebra in characteristic 2.

For
$$n=0,1,$$
 we set $C^0_{\mathrm{PA}}(A):=A$ and $C^1_{\mathrm{PA}}(A):=\mathfrak{X}^1(A).$

For $n \geq 2$, $C_{\mathrm{PA}}^n(A)$ consists of pairs $(\varphi, \omega) \in C_{\mathrm{res}}^n(L; M)$ where $\varphi \in \mathfrak{X}^n(A)$ and

$$\omega(xy, z_2, \dots, z_{n-1}) = x^2 \omega(y, z_2, \dots, z_{n-1}) + y^2 \omega(x, z_2, \dots, z_{n-1})$$
(14)
+ $xy \varphi(x, y, z_2, \dots, z_{n-1}),$

$$\omega(x, z_2, \cdots, z_i z_i', \cdots, z_{n-1}) = z_i \omega(x, z_2, \cdots, z_i', \cdots, z_{n-1}) + z_i' \omega(x, z_2, \cdots, z_i, \cdots, z_{n-1}).$$

$$(15)$$

for all $x, y, z_2, \cdots, z_{n-1} \in A$.

Proposition (Bouarroudj-E.-Liu)

$$\textit{Define} \boxed{ d_{\mathrm{PA}}^n = d_{\mathrm{res} \mid \mathcal{C}_{\mathrm{PA}}^n(\mathcal{A})}^n. } \ \textit{Then, } d_{\mathrm{PA}}^n \big(\mathcal{C}_{\mathrm{PA}}^n(\mathcal{A}) \big) \in \mathcal{C}_{\mathrm{PA}}^{n+1}(\mathcal{A}) \ \textit{and the spaces}$$

 $H_{\mathrm{PA}}^{n}(A)$ are well-defined.

Application: formal deformations

Let $(A,\cdot,\{-,-\},(-)^{\{2\}})$ be a restricted Poisson algebra. Let $A_k^t:=A[[t]]/t^{k+1}$ and consider

$$\mu_{(k)} := \{-, -\} + \sum_{i \ge 1}^k t^i \mu_i, \quad \text{and} \quad \omega_{(k)} := (-)^{\{2\}} + \sum_{i \ge 1}^k t^i \omega_i, \quad (16)$$

where $(\mu_i, \omega_i) \in C^2_{PA}(A) \ \forall i \geq 1$.

A tuple $(A_k^t,\cdot,\mu_{(k)},\omega_{(k)})$ is called a *formal deformation of order k* of the restricted Poisson algebra $(A,\cdot,\{-,-\},(-)^{\{2\}})$ if $(A_k^t,\mu_{(k)},\omega_{(k)})$ is a restricted Lie algebra.

Since $(\mu_i, \omega_i) \in C^2_{\mathrm{PA}}(A) \ \forall i \geq 1, \ (A_k^t, \cdot, \mu_{(k)}, \omega_{(k)})$ is a restricted Poisson algebra.

Application: formal deformations

Let $(A,\cdot,\{-,-\},(-)^{\{2\}})$ be a restricted Poisson algebra. Let $A_k^t:=A[[t]]/t^{k+1}$ and consider

$$\mu_{(k)} := \{-, -\} + \sum_{i \ge 1}^k t^i \mu_i, \quad \text{ and } \quad \omega_{(k)} := (-)^{\{2\}} + \sum_{i \ge 1}^k t^i \omega_i,$$
 (16)

where $(\mu_i, \omega_i) \in C^2_{PA}(A) \ \forall i \geq 1$.

A tuple $(A_k^t,\cdot,\mu_{(k)},\omega_{(k)})$ is called a *formal deformation of order k* of the restricted Poisson algebra $(A,\cdot,\{-,-\},(-)^{\{2\}})$ if $(A_k^t,\mu_{(k)},\omega_{(k)})$ is a restricted Lie algebra.

Since $(\mu_i, \omega_i) \in C^2_{\mathrm{PA}}(A) \ \forall i \geq 1, \ (A_k^t, \cdot, \mu_{(k)}, \omega_{(k)})$ is a restricted Poisson algebra.

Theorem (Bouarroudj-E.-Liu)

Let $(A,\cdot,\{-,-\},(-)^{\{2\}})$ be a restricted Poisson algebra. Then, the second cohomology space $H^2_{PA}(A)$ classifies (up to equivalence) the deformations of $(A,\cdot,\{-,-\},(-)^{\{2\}})$ of order 1.

Example: Heisenberg

Consider the 3-dimensional restricted Heisenberg Lie algebra $\mathfrak h$ spanned by elements e_1,e_2,e_3 with

$$[e_1, e_2] = e_3, \quad (-)^{[2]} = 0, \quad e_1 e_2 = e_3.$$

Example: Heisenberg

Consider the 3-dimensional restricted Heisenberg Lie algebra $\mathfrak h$ spanned by elements e_1, e_2, e_3 with

$$[e_1, e_2] = e_3, \quad (-)^{[2]} = 0, \quad e_1 e_2 = e_3.$$

$$\mathrm{H}^1_{\mathrm{PA}}(\mathfrak{h}) = \mathsf{Span}\{e_1 \otimes e_1^* + e_2 \otimes e_2^*, \ e_1 \otimes e_1^* + e_3 \otimes e_3^*\}.$$

Example: Heisenberg

Consider the 3-dimensional restricted Heisenberg Lie algebra $\mathfrak h$ spanned by elements e_1,e_2,e_3 with

$$[e_1, e_2] = e_3, \quad (-)^{[2]} = 0, \quad e_1 e_2 = e_3.$$

$$\mathrm{H}^1_{\mathrm{PA}}(\mathfrak{h}) = \mathsf{Span}\{e_1 \otimes e_1^* + e_2 \otimes e_2^*, \ e_1 \otimes e_1^* + e_3 \otimes e_3^*\}.$$

$$\mathrm{H}^{2}_{\mathrm{PA}}(\mathfrak{h}) = \big\{ (\varphi_{1}, 0), (\varphi_{2}, 0) \big\},\,$$

where

$$arphi_1 = e_1 \otimes (e_1^* \wedge e_2^*) + e_3 \otimes (e_2^* \wedge e_3^*); \ arphi_2 = e_2 \otimes (e_1^* \wedge e_2^*) + e_3 \otimes (e_1^* \wedge e_3^*).$$

Example: analogs of "classical Poisson" $\mathfrak{po}_{\Pi}(2n, \underline{N})$

Let $k \geq 1$. The associative commutative algebra of divided powers in k variables $x := (x_1, \cdots, x_k)$ is defined for $\underline{N} := (n_1, \cdots, n_k)$, where $n_s \geq 0, \ \forall \ 1 \leq s \leq k$, by

$$\mathbb{K}(x;\underline{N}) := \mathsf{Span}\big\{x^{(\underline{i})} := x_1^{(i_1)} \cdots x_k^{(i_k)}, \ (\underline{i}) = (i_1,\cdots,i_k), \ 0 \leq i_s \leq p^{n_s} - 1\big\}.$$

The multiplication is given by

$$x^{(\underline{i})}x^{(\underline{j})} = \begin{pmatrix} \underline{i} + \underline{j} \\ \underline{i} \end{pmatrix} x^{(\underline{i} + \underline{j})}, \text{ where } \begin{pmatrix} \underline{i} + \underline{j} \\ \underline{i} \end{pmatrix} := \prod_{s=1}^{k} \begin{pmatrix} i_s + j_s \\ i_s \end{pmatrix}. \tag{17}$$

Example: analogs of "classical Poisson" $\mathfrak{po}_{\Pi}(2n, \underline{N})$

Let $k \ge 1$. The associative commutative algebra of divided powers in k variables $x := (x_1, \cdots, x_k)$ is defined for $\underline{N} := (n_1, \cdots, n_k)$, where $n_s \ge 0$, $\forall \ 1 \le s \le k$, by

$$\mathbb{K}(x;\underline{N}) := \mathsf{Span}\big\{x^{(\underline{i})} := x_1^{(i_1)} \cdots x_k^{(i_k)}, \ (\underline{i}) = (i_1,\cdots,i_k), \ 0 \leq i_s \leq p^{n_s} - 1\big\}.$$

The multiplication is given by

$$x^{(\underline{i})}x^{(\underline{j})} = \begin{pmatrix} \underline{i} + \underline{j} \\ \underline{i} \end{pmatrix} x^{(\underline{i} + \underline{j})}, \text{ where } \begin{pmatrix} \underline{i} + \underline{j} \\ \underline{i} \end{pmatrix} := \prod_{s=1}^{k} \begin{pmatrix} i_s + j_s \\ i_s \end{pmatrix}. \tag{17}$$

For $n \ge 1$, define

$$\mathfrak{po}_\Pi(2n,\underline{N}):=\{f\in\mathbb{K}[p_i,q_i;\underline{N}],\ 1\leq i\leq n\},$$

endowed with the Lie bracket

$$\{f,g\}_{\Pi} := \sum_{i=1}^{n} \left(\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} - \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} \right).$$

(18)

Example: analogs of "classical Poisson" $\mathfrak{po}_{\Pi}(2n, \underline{N})$

Lemma

The space $\mathfrak{po}_\Pi(2n,\underline{1})$ is a restricted Poisson algebra with the bracket $\{-,-\}_\Pi$ and the 2-map

$$(p_iq_j)^{\{2\}}:=\delta_{i,j}p_iq_j.$$

Example: analogs of "classical Poisson" $\mathfrak{po}_{\Pi}(2n, \underline{N})$

Lemma

The space $\mathfrak{po}_\Pi(2n,\underline{1})$ is a restricted Poisson algebra with the bracket $\{-,-\}_\Pi$ and the 2-map

$$(p_iq_j)^{\{2\}}:=\delta_{i,j}p_iq_j.$$

Proposition

We have $H^1_{\mathrm{PA}} (\mathfrak{po}_{\Pi}(2,\underline{1})) = 0$ and $H^2_{\mathrm{PA}} (\mathfrak{po}_{\Pi}(2,\underline{1})) = Span\{(0,\omega)\}$, where

$$\omega(1) = 1, \ \omega(p_1) = \omega(q_1) = \omega(p_1q_1) = 0.$$

Example: analogs of "classical Poisson" $\mathfrak{po}_{\Pi}(2n, \underline{N})$

Lemma

The space $\mathfrak{po}_{\Pi}(2n,\underline{1})$ is a restricted Poisson algebra with the bracket $\{-,-\}_{\Pi}$ and the 2-map

$$(p_iq_j)^{\{2\}}:=\delta_{i,j}p_iq_j.$$

Proposition

We have $H^1_{\mathrm{PA}} (\mathfrak{po}_\Pi(2,\underline{1})) = 0$ and $H^2_{\mathrm{PA}} (\mathfrak{po}_\Pi(2,\underline{1})) = Span\{(0,\omega)\}$, where

$$\omega(1) = 1, \ \omega(p_1) = \omega(q_1) = \omega(p_1q_1) = 0.$$

To compare:

$$\dim H^1_{\mathrm{CE}}(\mathfrak{po}_{\Pi}(2,\underline{1})) = 4;$$

$$\dim H^2_{\mathrm{CE}}(\mathfrak{po}_{\Pi}(2,1)) = 6.$$

A comparison between the cohomologies

Kähler differentials.

Let A be an *unital* associative commutative \mathbb{K} -algebra. The module of Kähler differentials of A, denoted by $\Omega^1(A)$, is the free A-module with

- generators: dx, $x \in A$;
- relations:

$$\mathrm{d}(xy) = y\,\mathrm{d}\,x + x\,\mathrm{d}\,y; \ \mathrm{d}(x+y) = \mathrm{d}\,x + \mathrm{d}\,y; \ \mathrm{d}\,\lambda = 0, \quad \forall x,y \in A, \ \forall \lambda \in \mathbb{K}.$$

A comparison between the cohomologies

Kähler differentials.

Let A be an *unital* associative commutative \mathbb{K} -algebra. The module of Kähler differentials of A, denoted by $\Omega^1(A)$, is the free A-module with

- generators: dx, $x \in A$;
- relations:

$$d(xy) = y dx + x dy; \ d(x+y) = dx + dy; \ d\lambda = 0, \quad \forall x, y \in A, \ \forall \lambda \in \mathbb{K}.$$

universal property:

$$\begin{array}{ccc}
A & \xrightarrow{d} & \Omega^{1}(A) , \\
\text{derivation } D & & \\
A & & & \\
\end{array}$$
(19)

where A is seen as a module over itself using its multiplication.

A comparison between the cohomologies

Kähler differentials.

Let A be an *unital* associative commutative \mathbb{K} -algebra. The module of Kähler differentials of A, denoted by $\Omega^1(A)$, is the free A-module with

- generators: dx, $x \in A$;
- relations:

$$d(xy) = y dx + x dy; \ d(x+y) = dx + dy; \ d\lambda = 0, \quad \forall x, y \in A, \ \forall \lambda \in \mathbb{K}.$$

universal property:

$$A \xrightarrow{d} \Omega^{1}(A) , \qquad (19)$$
derivation $D \downarrow \qquad \qquad \exists ! \hat{D} A\text{-linear}$

where A is seen as a module over itself using its multiplication.

By this universal property, we have a natural isomorphism of A-modules

$$\operatorname{Der}(A) \cong \operatorname{Hom}_A(\Omega^1(A), A).$$
 (20)

Huebschmann's theorem, p = 2

Let $(A, \cdot, \{-, -\})$ be an ordinary Poisson algebra and $\Omega^1(A)$ its module of Kähler differentials, seen as a Lie algebra with the bracket

$$[x d u, y d v]_{\Omega^{1}(A)} := x\{u, y\} d v + y\{x, v\} d u + xy d\{u, v\}, \quad \forall x, y, u, v \in A.$$
 (21)

Huebschmann's theorem, p = 2

Let $(A, \cdot, \{-, -\})$ be an ordinary Poisson algebra and $\Omega^1(A)$ its module of Kähler differentials, seen as a Lie algebra with the bracket

$$[x \, \mathrm{d}\, u, y \, \mathrm{d}\, v]_{\Omega^1(A)} := x\{u,y\} \, \mathrm{d}\, v + y\{x,v\} \, \mathrm{d}\, u + xy \, \mathrm{d}\{u,v\}, \quad \forall x,y,u,v \in A. \eqno(21)$$

Then, $\left(A,\Omega^1(A),\pi^\sharp\right)$ is a Lie-Rinehart algebra, with

$$\pi^{\sharp}: \Omega^{1}(A) \to \operatorname{\mathsf{Hom}}_{A}(\Omega^{1}(A), A) \cong \operatorname{\mathsf{Der}}(A), \quad x \operatorname{d} u \mapsto x\{u, -\}.$$
 (22)

Huebschmann's theorem, p = 2

Let $(A, \cdot, \{-, -\})$ be an ordinary Poisson algebra and $\Omega^1(A)$ its module of Kähler differentials, seen as a Lie algebra with the bracket

$$[x\operatorname{d} u,y\operatorname{d} v]_{\Omega^1(A)}:=x\{u,y\}\operatorname{d} v+y\{x,v\}\operatorname{d} u+xy\operatorname{d}\{u,v\},\quad \forall x,y,u,v\in A.\eqno(21)$$

Then, $\left(A,\Omega^1(A),\pi^\sharp\right)$ is a Lie-Rinehart algebra, with

$$\pi^{\sharp}: \Omega^{1}(A) \to \operatorname{\mathsf{Hom}}_{A}(\Omega^{1}(A), A) \cong \operatorname{\mathsf{Der}}(A), \quad x \operatorname{d} u \mapsto x\{u, -\}.$$
 (22)

Theorem (Bouarroudj-E.-Liu)

Let $(A,\cdot,\{-,-\},(-)^{\{2\}})$ be a restricted Poisson algebra in characteristic 2, and suppose that the module of Kähler differentials is free as an A-module. Define a map $(-)^{[2]}:\Omega^1(A)\to\Omega^1(A)$ by

$$(x d u)^{[2]} = x^2 d(u^{\{2\}}) + x\{u, x\} d u, \quad \forall \ x d u \in \Omega^1(A).$$
 (23)

Then, $(\Omega^1(A),[-,-]_{\Omega^1(A)},(-)^{[2]})$ is a restricted Lie algebra and $(A,\Omega^1(A),\pi^\sharp)$ is a restricted Lie-Rinehart algebra.

Kähler forms

Let $k \geq 0$ and consider the A-modules $\Omega^k(A) := \wedge_A^k \Omega^1(A), \ k \geq 1$ and $\Omega^0(A) := A$, and

$$\Omega^{\bullet}(A) := \bigoplus_{k>0} \Omega^k(A).$$

The map $d:A\to\Omega^1(A)$ extends a \mathbb{K} -linear map $\wedge^{ullet} d:\wedge^{ullet} A\to\Omega^{ullet}(A)$ by the formula

$$\wedge^{\bullet} d(u_1 \wedge \cdots \wedge u_k) := d u_1 \wedge \cdots \wedge d u_k, \quad \forall u_1, \cdots u_k \in A.$$
 (24)

Kähler forms

Let $k \geq 0$ and consider the A-modules $\Omega^k(A) := \wedge_A^k \Omega^1(A), \ k \geq 1$ and $\Omega^0(A) := A$, and

$$\Omega^{\bullet}(A) := \bigoplus_{k \geq 0} \Omega^k(A).$$

The map $d:A\to\Omega^1(A)$ extends a $\mathbb K$ -linear map $\wedge^{ullet}\,d:\wedge^{ullet}A\to\Omega^{ullet}(A)$ by the formula

$$\wedge^{\bullet} d(u_1 \wedge \cdots \wedge u_k) := d u_1 \wedge \cdots \wedge d u_k, \quad \forall u_1, \cdots u_k \in A.$$
 (24)

Universal property:

Kähler forms

Let $k \geq 0$ and consider the A-modules $\Omega^k(A) := \wedge_A^k \Omega^1(A), \ k \geq 1$ and $\Omega^0(A) := A$, and

$$\Omega^{\bullet}(A) := \bigoplus_{k \geq 0} \Omega^k(A).$$

The map $d:A\to\Omega^1(A)$ extends a \mathbb{K} -linear map $\wedge^{\bullet}d:\wedge^{\bullet}A\to\Omega^{\bullet}(A)$ by the formula

$$\wedge^{\bullet} d(u_1 \wedge \cdots \wedge u_k) := d u_1 \wedge \cdots \wedge d u_k, \quad \forall u_1, \cdots u_k \in A.$$
 (24)

Universal property:

As a consequence, we have a natural isomorphism of A-modules:

$$\mathfrak{X}^k(A) \cong \operatorname{Hom}_A(\Omega^k(A), A) \tag{26}$$

and the map $\varphi \to \hat{\varphi}$ induces a natural isomorphism

$$\mathfrak{X}^{\bullet}(A) \cong \bigoplus \operatorname{Hom}_{A}(\Omega^{k}(A), A).$$
 (27)

The comparison theorem, 1/2

Proposition (Bouarroudj-E.-Liu)

For $k \geq 2$, let $(\varphi, \omega) \in C^k_{PA}(A)$. Then, there exists an unique map

$$\hat{\omega}:\Omega^1(A)\otimes\Omega^{k-2}(A)\to A$$

such that

$$(\hat{\varphi}, \hat{\omega}) \in C_{LR}^k(\Omega^k(A); A) \text{ and } \hat{\omega} \circ (d \otimes \wedge^{k-2} d) = \omega,$$

that is, the following diagram commutes:

$$A \otimes \wedge^{k-2} A \xrightarrow{\mathrm{d} \otimes \wedge^{k-2} \mathrm{d}} \Omega^{1}(A) \otimes \Omega^{k-2}(A) \tag{28}$$

where A is seen as a module over itself using its multiplication.

The comparison theorem, 2/2

Theorem (Bouarroudj-E.-Liu)

Let $(A, \cdot, \{-, -\}, (-)^{\{2\}})$ be a restricted Poisson algebra in characteristic 2. If the module of the Kähler differential $\Omega^1(A)$ is free, then the cohomology complex

$$\left(\bigoplus_{n\geq 0} C^n_{\mathrm{PA}}(A), \mathrm{d}^n_{\mathrm{PA}}\right)$$

for the restricted Poisson algebra A is isomorphic to the cohomology complex

$$\left(\bigoplus_{n>0}C_{\operatorname{LR}}^n\left(\Omega^1(A);A\right),\operatorname{d}_{\operatorname{LR}}^n\right)$$

for the restricted Lie-Rinehart algebra $(A, \Omega^1(A), \pi^{\sharp})$.

Thank you for your attention

Main reference:

S. Bouarroudj, Q. Ehret, J. Liu, Cohomology of restricted Poisson algebras in characteristic 2, arXiv:2504.07601.