Deformations of Lie-Rinehart (Super)algebras

Quentin Ehret

New Trends in Hopf Algebras and Monoidal Categories, Torino

September 2022

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction

- ② Deformations of Lie-Rinehart superalgebras
- **③** The restricted side of the story: positive characteristic.

 ${\mathbb K}$ is a field of characteristic 0.

Definition

A Lie superalgebra L is a \mathbb{Z}_2 -graded \mathbb{K} -module $L = L_0 \bigoplus L_1$ endowed with a bracket $[\cdot, \cdot]$ (called super Lie bracket) satisfying, for homogeneous elements $x, y, z \in L$:

•
$$|[x,y]| = |x| + |y|;$$

• $[x, y] = -(-1)^{|x||y|}[y, x]$ (super-skewsymmetry);

•
$$(-1)^{|x||z|}[x, [y, z]] + (-1)^{|z||y|}[z, [x, y]] + (-1)^{|x||y|}[y, [z, x]] = 0$$

(super-Jacobi).

Definitions

Definition

An associative superalgebra is a \mathbb{Z}_2 -graded \mathbb{K} -module $A = A_0 \oplus A_1$ endowed with a bilinear map $A \times A \longrightarrow A$ such that (ab)c = a(bc) for all $a, b, c \in A$, and $A_iA_j \subset A_{i+j}$.

It is called supercommutative if $ab = (-1)^{|a||b|}ba$, $\forall a, b$ homogeneous in A.

Definitions

Definition

Let A be a superalgebra. A map $D : A \longrightarrow A$ is a **superderivation** (of degree |D|) of A if D is a \mathbb{Z}_2 -graded linear map and if the super-Leibniz condition is satisfied:

$$D(ab) = D(a)b + (-1)^{|a||D|}aD(b) \quad \forall a, b \in A.$$

We denote by Der(A) the vector superspace of superderivations of A.

Definitions

Definition

- A Lie-Rinehart superalgebra is a pair (A, L), where
 - L is a Lie superalgebra over \mathbb{K} , endowed with a bracket $[\cdot, \cdot]$;
 - A is an associative and supercommutative K-superalgebra,

such that, for $x, y \in L$ and $a, b \in A$:

- There is an action $A \times L \longrightarrow L$, $(a, x) \longmapsto a \cdot x$, making L an A-module;
- There is a map ρ : L → Der(A), x → ρ_x, which is both a Lie algebra morphism and a A-module morphism, called anchor map;
- $[x, a \cdot y] = \rho_x(a) \cdot y + (-1)^{|a||x|} a \cdot [x, y].$

Examples

• **Trivial Lie-Rinehart superalgebra.** Let *A* be an associative unital superalgebra and *L* be a Lie superalgebra. Then the pair (*A*, *L*) can always be endowed with a Lie-Rinehart superalgebra structure with the trivial action and the zero anchor.

Examples

- **Trivial Lie-Rinehart superalgebra.** Let *A* be an associative unital superalgebra and *L* be a Lie superalgebra. Then the pair (*A*, *L*) can always be endowed with a Lie-Rinehart superalgebra structure with the trivial action and the zero anchor.
- Lie superalgebra of superderivations. Let A be an associative unital superalgebra, and L = Der(A) be its superderivations superalgebra. Then (A, Der(A)) is a Lie-Rinehart superalgebra, with ρ = id.

A Classification Deformations and Cohomology

Classification: an example

(1|1, 1|1)-type: $(\alpha_i \in \mathbb{C}, \ \alpha_i \neq 0)$

Α	L	Action	Anchor
$A_{1 1}^1$	$L^{1}_{1 1}$	$\boldsymbol{e}_1^1 \cdot \boldsymbol{f}_1^1 = \alpha_1 \boldsymbol{f}_1^0$	null
	$L^{2}_{1 1}$	trivial	$ ho(f_1^0)(e_1^1)=lpha_2e_1^1$
			$ ho(f_1^0)(e_1^1) = -e_1^1, \ ho(f_1^1)(e_1^1) = -lpha_3 e_1^0$
		$e_1^1 \cdot f_1^0 = \alpha_4 f_1^1$	$ ho(f_1^0)(e_1^1)=e_1^1$
	$L^{3}_{1 1}$	trivial	$ ho(f_1^0)(e_1^1)=lpha_5e_1^1$
		$e_1^1 \cdot f_1^0 = \alpha_6 f_1^1$	null

Classification: an example

(1|1, 1|1)-type:
$$(\alpha_i \in \mathbb{C}, \ \alpha_i \neq 0)$$

Α	L	Action	Anchor
$A_{1 1}^1$	$L^{1}_{1 1}$	$\boldsymbol{e}_1^1 \cdot \boldsymbol{f}_1^1 = \alpha_1 \boldsymbol{f}_1^0$	null
	$L^{2}_{1 1}$	trivial	$\rho(f_1^0)(\boldsymbol{e}_1^1) = \alpha_2 \boldsymbol{e}_1^1$
			$ ho(f_1^0)(e_1^1) = -e_1^1, \ ho(f_1^1)(e_1^1) = -lpha_3 e_1^0$
		$e_1^1 \cdot f_1^0 = \alpha_4 f_1^1$	$ ho(f_1^0)(e_1^1)=e_1^1$
	$L^{3}_{1 1}$	trivial	$ ho(f_1^0)(e_1^1)=lpha_5e_1^1$
		$e_1^1 \cdot f_1^0 = \alpha_6 f_1^1$	null

 \sim → We have obtained all Lie-Rinehart superalgebras structures on pairs (*A*, *L*) with dim(*A*) ≤ 2 and dim(*L*) ≤ 4.

Deformation theory: Super-multiderivations

Let $(A, L[\cdot, \cdot], \rho)$ be a Lie-Rinehart superalgebra and M an A-module.

Definition (Super-multiderivations space)

We define $Der^n(M, M)$ as the space of multilinear maps

$$f: M^{\wedge (n+1)} \longrightarrow M$$

such that it exists an application $\sigma_f : M^{\times n} \longrightarrow \text{Der}(A)$ (called symbol map), such that

$$\sigma_f(x_1, \cdots, a \cdot x_i, \cdots, x_n) = (-1)^{|a|(|x_1| + \dots + |x_{i-1}|)} a \cdot \sigma_f(x_1, \cdots, x_i, \cdots, x_n);$$

$$f(x_1, \cdots, x_n, a \cdot x_{n+1}) = (-1)^{|a|(|f| + |x_1| + \dots + |x_n|)} a \cdot f(x_1, \cdots, x_{n+1})$$

$$+ \sigma_f(x_1, \cdots, x_n)(a)(x_{n+1}), \quad \forall a \in A.$$

A Classification Deformations and Cohomology

Deformation theory: Super-multiderivations

$\operatorname{Der}^*(M, M) = \bigoplus_{n \ge -1} \operatorname{Der}^n(M, M)$, with $\operatorname{Der}^{-1}(M, M) = M$.

Deformation theory: Super-multiderivations

$$\operatorname{Der}^*(M, M) = \bigoplus_{n \ge -1} \operatorname{Der}^n(M, M)$$
, with $\operatorname{Der}^{-1}(M, M) = M$.

Lie structure: $f \in \text{Der}^{p}(M, M)$ and $g \in \text{Der}^{q}(M, M)$:

$$[f,g] = f \circ g - (-1)^{pq} g \circ f,$$

with symbol map $\sigma_{[f,g]} = \sigma_f \circ g - (-1)^{pq} \sigma_g \circ f + [\sigma_f, \sigma_g],$

Deformation theory: Super-multiderivations

$$\operatorname{Der}^*(M, M) = \bigoplus_{n \ge -1} \operatorname{Der}^n(M, M)$$
, with $\operatorname{Der}^{-1}(M, M) = M$.

Lie structure: $f \in \text{Der}^{p}(M, M)$ and $g \in \text{Der}^{q}(M, M)$:

$$[f,g] = f \circ g - (-1)^{pq} g \circ f,$$

with symbol map $\sigma_{[f,g]} = \sigma_f \circ g - (-1)^{pq} \sigma_g \circ f + [\sigma_f, \sigma_g],$

with

A Classification Deformations and Cohomology

Deformation theory: Super-multiderivations

Proposition

There is a one-to-one correspondence between Lie-Rinehart superstructures on (A, L) and elements $m \in \text{Der}^1(L, L)$ such that [m, m] = 0.

Deformation theory: Super-multiderivations

Proposition

There is a one-to-one correspondence between Lie-Rinehart superstructures on (A, L) and elements $m \in \text{Der}^1(L, L)$ such that [m, m] = 0.

 \rightsquigarrow with that in mind, we can construct a deformation theory by identifying Lie-Rinehart superstructures on (A, L) and the corresponding element $m \in \text{Der}^1(L, L)$.

A Classification Deformations and Cohomology

Deformation theory: Deformation cohomology

Cochains space.

$$C^n_{def}(L,L) := \operatorname{Der}^{n-1}(L,L)$$
$$C^*_{def}(L,L) := \bigoplus_{n \ge 0} C^n_{def}(L,L).$$

A Classification Deformations and Cohomology

<ロ> <四> <四> <四> <三</p>

12/25

Deformation theory: Deformation cohomology

Cochains space.

$$C^n_{def}(L,L) := \operatorname{Der}^{n-1}(L,L)$$
$$C^*_{def}(L,L) := \bigoplus_{n \ge 0} C^n_{def}(L,L).$$

We endow it with a differential operator

$$\delta: C^n_{def}(L,L) \longrightarrow C^{n+1}_{def}(L,L),$$
$$D \longmapsto [m,D].$$

A Classification Deformations and Cohomology

Deformation theory: Deformation cohomology

Cochains space.

$$C^n_{def}(L,L) := \operatorname{Der}^{n-1}(L,L)$$
$$C^*_{def}(L,L) := \bigoplus_{n \ge 0} C^n_{def}(L,L).$$

We endow it with a differential operator

$$\begin{split} \delta &: C_{def}^n(L,L) \longrightarrow C_{def}^{n+1}(L,L), \\ D &\longmapsto [m,D]. \end{split}$$

Proposition

 $(C^*_{def}(L,L),\delta)$ is a cochain complex.

A Classification Deformations and Cohomology

Deformation theory: main results

Definition

Let $(A, L, [\cdot, \cdot], \rho)$ be a Lie-Rinehart superalgebra, and let $m \in \text{Der}^1(L, L)$ be the corresponding super-multiderivation.

$$m_t: L \times L \longrightarrow L[[t]]$$

 $(x, y) \longmapsto \sum_{i \ge 0} t^i m_i(x, y), \quad m_0 = m, \ m_i \in \text{Der}^1(L, L),$

Moreover, m_t must verify $[m_t, m_t] = 0$, the bracket being the \mathbb{Z} -graded bracket on $C^*_{def}(L[[t]], L[[t]])$.

A Classification Deformations and Cohomology

Deformation theory: main results

Theorem

Let m_t be a deformation of a Lie-Rinehart superalgebra (A, L). Then the infinitesimal m_1 is a 2-cocycle with respect to the deformation cohomology.

A Classification Deformations and Cohomology

Deformation theory: main results

Theorem

Let m_t be a deformation of a Lie-Rinehart superalgebra (A, L). Then the infinitesimal m_1 is a 2-cocycle with respect to the deformation cohomology.

Theorem

Any non-trivial deformation of $m \in Der^1(L, L)$ is equivalent to a deformation whose infinitesimal is not a coboundary.

A Classification Deformations and Cohomology

Deformation theory: main results

Theorem

Let m_t be a deformation of a Lie-Rinehart superalgebra (A, L). Then the infinitesimal m_1 is a 2-cocycle with respect to the deformation cohomology.

Theorem

Any non-trivial deformation of $m \in Der^1(L, L)$ is equivalent to a deformation whose infinitesimal is not a coboundary.

 \implies If $H_{def}^2 = 0$, any deformation is equivalent to the trivial deformation.

Restricted Lie algebras Restricted Lie Rinehart algebras

The restricted side of the story.

Let \mathbb{F} be a field of prime characteristic p.

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L endowed with an application $(\cdot)^{[p]} : L \longrightarrow L$ such that

•
$$(\lambda x)^{[p]} = \lambda^p x^{[p]}, x \in L, \lambda \in \mathbb{F};$$

Restricted Lie algebras Restricted Lie Rinehart algebras

The restricted side of the story.

Let \mathbb{F} be a field of prime characteristic p.

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L endowed with an application $(\cdot)^{[p]} : L \longrightarrow L$ such that ($\lambda x)^{[p]} = \lambda^p x^{[p]}, x \in L, \lambda \in \mathbb{F};$ ($x, y^{[p]}$] = [[...[x, y], y], ..., y];

Restricted Lie algebras Restricted Lie Rinehart algebras

The restricted side of the story.

Let \mathbb{F} be a field of prime characteristic p.

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L endowed with an application $(\cdot)^{[p]}: L \longrightarrow L$ such that $(\lambda x)^{[p]} = \lambda^p x^{[p]}, x \in L, \lambda \in \mathbb{F};$ p terms $[x, y^{[p]}] = [[...[x, y], y], ..., y];$ 3 $(x+y)^{[p]} = x^{[p]} + y^{[p]} + \sum_{i=1}^{p-1} s_i(x,y),$ with $i_{s_i}(x, y)$ the coefficient of Z^{i-1} in $ad_{Z_{x+y}}^{p-1}(x)$. Such an application $(-)^{[p]}: L \longrightarrow L$ is called a p-map.

Definition (Restricted 2-cochains; Evans, Fuchs)

Let $\varphi \in C^2_{CE}(L, M)$ (ordinary Chevalley-Eilenberg 2-cochain) and $\omega : L \longrightarrow M$. Then ω has the (*)-property w.r.t φ if

Definition (Restricted 2-cochains; Evans, Fuchs)

Let $\varphi \in C^2_{CE}(L, M)$ (ordinary Chevalley-Eilenberg 2-cochain) and $\omega : L \longrightarrow M$. Then ω has the (*)-property w.r.t φ if $\omega(\lambda x) = \lambda^p \omega(x), \ \lambda \in \mathbb{F}, \ x \in L;$ $\omega(x + y) = \omega(x) + \omega(y) + \sum_{\substack{x_i = x, \ or \ y \\ x_1 = x, \ x_2 = y}} \frac{1}{\pi(x)} \sum_{k=0}^{p-2} (-1)^k x_p ... x_{p-k+1} \varphi([[...[x_1, x_2], x_3]..., x_{p-k-1}], x_{p-k}),$

with $x, y \in L$, $\pi(x)$ the number of factors x_i equal to x.

Definition (Restricted 2-cochains; Evans, Fuchs)

Let $\varphi \in C^2_{CE}(L, M)$ (ordinary Chevalley-Eilenberg 2-cochain) and $\omega : L \longrightarrow M$. Then ω has the (*)-property w.r.t φ if $\omega(\lambda x) = \lambda^p \omega(x), \ \lambda \in \mathbb{F}, \ x \in L;$ $\omega(x + y) = \omega(x) + \omega(y) + \sum_{\substack{x_i = x \text{ or } y \\ x_1 = x, \ x_2 = y}} \frac{1}{\pi(x)} \sum_{k=0}^{p-2} (-1)^k x_p ... x_{p-k+1} \varphi([[...[x_1, x_2], x_3]..., x_{p-k-1}], x_{p-k}),$

with $x, y \in L$, $\pi(x)$ the number of factors x_i equal to x. We then define

$$C^2_*(L,M) = \left\{(arphi,\omega), \ arphi \in C^2_{CE}(L,M), \ \omega \ has \ the \ (*) ext{-property w.r.t } arphi
ight\}$$

A restriced 2-cocycle is an element (α, β) ∈ C²_{*}(L, M) such that

() α is an ordinary Chevalley-Eilenberg 2-cocycle;

- A restriced 2-cocycle is an element (α, β) ∈ C²_{*}(L, M) such that
 - **(**) α is an ordinary Chevalley-Eilenberg 2-cocycle;

$$2 \ \alpha \left(x, y^{[p]} \right) - \sum_{i+j=p-1} (-1)^{i} y^{i} \alpha \left([x, \underbrace{y, ..., y}_{j \text{ terms}}], y \right) + \ x \beta(y) = 0.$$

A restriced 2-coboundary is an element (α, β) ∈ C²_{*}(L, M) such that ∃φ ∈ Hom(L, M),

•
$$\alpha(x, y) = \varphi([x, y]) - x\varphi(y) + y\varphi(x);$$

• $\beta(x) = \varphi(x^{[p]}) - x^{p-1}\varphi(x).$

We are in the following situation:

$$0 \longrightarrow C^0_*(L, M) \xrightarrow{d^0_*} C^1_*(L, M) \xrightarrow{d^1_*} C^2_*(L, M) \xrightarrow{d^2_*} C^3_*(L, M)$$
with $d^0_* = d^0_{CF}$.

Restricted Lie algebras Restricted Lie Rinehart algebras

Restricted Formal Deformations

Definition

A restricted formal deformation of L is given by:

$$[\cdot,\cdot]_t:(x,y)\longmapsto \sum_{i\geq 0}t^i\mu_i(x,y), \ \ (\cdot)^{[p]_t}:x\longmapsto \sum_{j\geq 0}t^j\omega_j(x),$$

with $\mu_0(x, y) = [x, y]$, μ_i skewsymmetric, $\omega_0 = (\cdot)^{[p]}$, ω_j such that $\omega_j(\lambda x) = \lambda^p \omega_j(x)$. Moreover, $[\cdot, \cdot]_t$ et $(\cdot)^{[p]_t}$ must satisfy

$$[x, [y, z]_t]_t + [y, [z, x]_t]_t + [z, [x, y]_t]_t = 0;$$
(1)

$$\left[x, y^{[p]_t}\right]_t = [[...[x, y]_t, y]_t, ..., y]_t.$$
(2)

・ロト・日本・モト・モト・ ヨー ろくぐ

Restricted Lie algebras Restricted Lie Rinehart algebras

Restricted Formal Deformations

Proposition

Let $([\cdot, \cdot]_t, (\cdot)^{[p]_t})$ be a restricted deformation of $(L, [\cdot, \cdot], (\cdot)^{[p]})$. Then (μ_1, ω_1) is a 2-cocyle of the restricted cohomology.

Restricted Lie algebras Restricted Lie Rinehart algebras

Restricted Formal Deformations

Proposition

Let $([\cdot, \cdot]_t, (\cdot)^{[p]_t})$ be a restricted deformation of $(L, [\cdot, \cdot], (\cdot)^{[p]})$. Then (μ_1, ω_1) is a 2-cocyle of the restricted cohomology.

Proposition

Let $([\cdot, \cdot]_t^1, (\cdot)^{[p]_t^1})$ and $([\cdot, \cdot]_t^2, (\cdot)^{[p]_t^2})$ be two equivalent formal deformations of $(L, [\cdot, \cdot], (\cdot)^{[p]})$. Then, their infinitesimal elements are in the same cohomological class.

Restricted Lie algebras Restricted Lie Rinehart algebras

The restricted side of the story.

Let A be an associative commutative algebra, $D \in Der(A)$ and $a \in A$. In characteristic p, we have:

$$(aD)^{p} = a^{p}D^{p} + (aD)^{p-1}(a)D.$$

Restricted Lie algebras Restricted Lie Rinehart algebras

Restricted Lie-Rinehart Algebras.

Definition

Let A be an associative commutative algebra over a field \mathbb{F} of characteristic p. Then (A, L) is a **restricted Lie-Rinehart algebra** if

•
$$(A, L)$$
 is a Lie-Rinehart algebra, with anchor map $\rho: L \longrightarrow \text{Der}(A);$

2
$$(L, (\cdot)^{[p]})$$
 is a restricted Lie algebra;

3
$$\rho(x^{[p]}) = \rho(x)^{p};$$

●
$$(ax)^{[p]} = a^p x^{[p]} + \rho(ax)^{p-1}(a)x, \ a \in A, \ x \in L.$$

Restricted Lie algebras Restricted Lie Rinehart algebras

Definition

A restricted multiderivation (of order 1) is a pair (m, ω) , where $m : L \times L \rightarrow L$ is skew-symmetric, ω is p-homogeneous and satisfies

$$\omega(x+y) = \omega(x) + \omega(y) + \sum_{i=1}^{p-1} \theta_i(x,y),$$
(3)

where $i\theta_i(x, y)$ is the coefficient of Z^{i-1} in $\left(\tilde{ad}_m(Zx+y)\right)^{p-1}(x)$, with $\tilde{ad}_m(x)(y) := m(x, y)$, such that it exists a map $\sigma_m : L \to \text{Der}(A)$ called **restricted** symbol map which must satisfy the following four conditions, for $x, y \in L$ and $a \in A$:

$$\sigma(ax) = a\sigma(x); \tag{4}$$

$$m(x, ay) = am(x, y) + \sigma(x)(a)y;$$
(5)

$$\sigma \circ \omega(x) = \sigma(x)^{p}; \tag{6}$$

$$\omega(ax) = a^{p} \omega(x) + \sigma(ax)^{p-1}(a)x.$$
(7)

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q @ 23 / 25

Proposition

There is a one-to-one correspondence between restricted Lie-Rinehart structures on the pair (A, L) and restricted multiderivations of order 1 such that

$$m(x, m(y, z)) + m(y, m(z, x)) + m(z, m(x, y)) = 0$$
 (8)

and

$$m(x,\omega(y)) = m(m(...m(x,y),y),...,y)$$
(9)

3

24 / 25

Restricted Lie algebras Restricted Lie Rinehart algebras

Thank you for your attention.