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SL,(C) slp(C)
| |
{M € GL,(C), det(M) =1} {M € M,(C), Tr(M) =0}

2/40



Lie algebras in characteristic 0
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@ Deformations of Lie algebras
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@ Introduction to restricted Lie algebras
@ The p-mappings
@ The restricted cohomology
@ Restricted deformations

@ Restricted Lie-Rinehart algebras
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Lie algebras in characteristic 0

Characteristic 0 - Basics

Let K be an algebraic closed field of characteristic 0.

Definition

Let L be a K vector space. A Lie bracket on L is a bilinear map
[,] : L x L — L satisfying, for x,y,z € L,

Q [x,y] = —|y, x] (anticommutativity)
9 [x.[y.z]] + [y [z, x]] + [z, [x, y]] = O (Jacobi identity).

If L is endowed with such a bracket, we call the pair (L,[-,-]) a Lie
algebra.

3/40



. . - Basics
Lie algebras in characteristic 0

Characteristic 0 - Basics

Examples:

e [x,y] =0 Vx,y € L (abelian Lie algebra);
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Lie algebras in characteristic 0

Characteristic 0 - Basics

Examples:
e [x,y] =0 Vx,y € L (abelian Lie algebra);
o let u: L x L — L bean associative multiplication. Then

[x, y] := p(x,y) — ply; x)

is a Lie bracket on L called commutator.
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Lie algebras in characteristic 0

Characteristic 0 - Basics

Examples:
e [x,y] =0 Vx,y € L (abelian Lie algebra);
o let u: L x L — L bean associative multiplication. Then
[X7y] = M(Xay) - ,U,(y,X)
is a Lie bracket on L called commutator.

Important consequence: M,(K) endowed with the
commutator is a Lie algebra.
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Definition
A linear map ¢ : L1 — L, is a Lie algebra map if

@ ([x,y]1) = [p(x), o(¥)]> ¥ x,y € L1
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Lie algebras in characteristic 0

Characteristic 0 - Basics

Definition
A linear map ¢ : L1 — L, is a Lie algebra map if

@ ([x,y]1) = [p(x), o(¥)]> ¥ x,y € L1

Definition

A representation p : L — End(V) is a Lie algebra
representation if p is a Lie algebra map, that is,

p([x, 1) = p(x)p(y) — p(y)p(x).

Remark: One can also say that V is a L-module.
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Characteristic 0 - Basics

Crucial example: the adjoint representation

ad: L — End(L)
x — ady 1y — [x,y].
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Basics
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Lie algebras in characteristic 0

Characteristic 0 - Chevalley-Eilenberg cohomology

We aim to construct a cochain complex associated to L:
d! d? o3

0—s 0 @t 4 2 & o3 P

The C' being L-modules and the @’ linear maps satisfying

dtlod = 0.
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Characteristic 0 - Chevalley-Eilenberg cohomology

Let L be a Lie algebra and M a L-module. For g > 0, we set:

Cle(L, M) := Homg (AL, M).
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Let L be a Lie algebra and M a L-module. For g > 0, we set:

Cle(L, M) := Homg (AL, M).

Those are the maps ¢ : L*9 — M, g-linear and skewsymmetric.

They satisfy

Vo € &g, 9(Xp(1)s -+ Xa(q)) = SigN(a)p(x1, -..s Xq)-
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Characteristic 0 - Chevalley-Eilenberg cohomology

Let L be a Lie algebra and M a L-module. For g > 0, we set:

Cle(L, M) := Homg (AL, M).

Those are the maps ¢ : L*9 — M, g-linear and skewsymmetric.

They satisfy
Vo € &g, 9(Xp(1)s -+ Xa(q)) = SigN(a)p(x1, -..s Xq)-

Remark: if (L, [,-]) is a Lie algebra, then the bracket [-, ] belongs
to C2¢(L, L).
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Characteristic 0 - Chevalley-Eilenberg cohomology

Now, we need to consider differential maps

dgE : CgE(L’ M) — Cg—EH(L? M),
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Lie algebras in characteristic 0

Characteristic 0 - Chevalley-Eilenberg cohomology

Now, we need to consider differential maps

die : C&e(L, M) — CEEH (L, M),
given by

dgEQO(Xl, ceey Xq+1) =

Z (—1)i+j71g0 ([X,',Xj],Xl, Xy ey )?j, ...,Xq_|_1)

1<i<j<q+1
q+1

—I—Z 1) X+ X1,...,)’(\,',...,Xq+1).
1<i
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Characteristic 0 - Chevalley-Eilenberg cohomology

Examples of differential maps.

dico(x1, .y Xgi1) = Z (—1) 720 ([xi, X1, X15 Kt ooy Ky ooy Xg1)
1<i<j<q+1
g+1
+Z @ (X1, s Xiy ooy Xg41) -
1<i
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Characteristic 0 - Chevalley-Eilenberg cohomology

Examples of differential maps.

dico(x1, .y Xgi1) = Z (—1) 720 ([xi, X1, X15 Kt ooy Ky ooy Xg1)
1<i<j<q+1
g+1
+Z @ (X1, s Xiy ooy Xg41) -
1<i

d o(x1,x0) =p([x1, x2]) — x1 - (x2) + x2 - (x1).

d?p(x1, x2, x3) =th([x1, x2], x3) — ¥ ([x1, x3], x2) + ¥([x2, x3], x1)

— x1 - Y(x2,X3) + X2 - (X1, x3) — x3 - Y(x1, X2).
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Those maps satisfy ngErl odlg =0, Vg>0.
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Characteristic 0 - Chevalley-Eilenberg cohomology

Those maps satisfy dq+1 odlg =0, Vg>0.

© (Cle(L, M), dlg),, is a cochain complex.
@ We denote ZZ(L, M) = ker(dlg) (g-cocycles).

@ We denote B, (L, M) = im(d%:") (q-coboundaries).
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Characteristic 0 - Chevalley-Eilenberg cohomology

Those maps satisfy dggl odlg =0, Vg>0.

© (Cle(L, M), dlg),, is a cochain complex.
@ We denote ZZ(L, M) = ker(dlg) (g-cocycles).
@ We denote B, (L, M) = im(d%:") (q-coboundaries).

@ We have Bl (L, M) C ZZc(L, M). We can consider the
quotient space

HIc(L,M) = Z2(L, M)/Blc(L, M).
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Example: computing H&g(L, L).

¢ € Cle(L L) = diep(x1,x2) = o([x1, xa])—[x1, o (x2) |+ [x2, o (x1)]-
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Example: computing H&g(L, L).

¢ € Cle(L L) = diep(x1,x2) = o([x1, xa])—[x1, o (x2) |+ [x2, o (x1)]-

Then,

28e(L, 1) = {p € Cle(L, L), wllxel) = [ ple)] + [p(x), %l | -
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Example: computing H&g(L, L).

¢ € Cle(L L) = diep(x1,x2) = o([x1, xa])—[x1, o (x2) |+ [x2, o (x1)]-

Then,

28e(L, 1) = {p € Cle(L, L), wllxel) = [ ple)] + [p(x), %l | -

BEe(L, L) = im(d2E) = {¢ € Cle(L, L), Ix € L, P =ady}.
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Characteristic 0 - Chevalley-Eilenberg cohomology

Example: computing H&g(L, L).

¢ € Cle(L L) = diep(x1,x2) = o([x1, xa])—[x1, o (x2) |+ [x2, o (x1)]-

Then,

28e(L, 1) = {p € Cle(L, L), wllxel) = [ ple)] + [p(x), %l | -

BEe(L, L) = im(d2E) = {¢ € Cle(L, L), Ix € L, P =ady}.
Finally,

HEg(L, L) = {derivations of L} / {inner derivations of L} = Out(L).
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Characteristic 0 - Deformations

Definition

Let (L,[-,-]) a Lie algebra. A formal deformation of L is a
K{[[t]]-bilinear map

pe = L[[e]] < L[[e]] — L[[t]],
defined on L x L by

pe(x,y) = POyl + > tuilx,y),
i>1

with p; : L x L — L bilinear skewsymmetric satisfying

/J/t(X,,U,t(_y,Z))+/,Lt(y,/,bt(Z,X))+/$t(Z,Mt(X,y)) = 07 vxa)/az € L.
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Characteristic 0 - Deformations

/,Lt(X,,U,t(_y,Z))+Mt(y,ﬂt(Z,X))+,Ltt(Z,,LLt(X,y)) = 07 vxa)/az € L.

We expand this equation and we get (for every g > 0)

Z Ml X, fhg—i }/7 )) —i—,u,-(y,,uq_,-(z,x))—i—u,-(z,,u,q_,'(x,y))) =0
i=0
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e Taking g = 0, we recover the Jacobi identity;
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Characteristic 0 - Deformations

/,Lt(X,,U,t(_y,Z))+Mt(y,ﬂt(Z,X))+,Ltt(Z,,LLt(X,y)) = 07 vxa)/az € L.

We expand this equation and we get (for every g > 0)

Z Ml X, fhg—i }/7 )) —i—,u,-(y,,uq_,-(z,x))—i—u,-(z,,u,q_,'(x,y))) =0
i=0

e Taking g = 0, we recover the Jacobi identity;
o Taking g = 1, we obtain 1 € Z2g(L, L).

14 /40



Basics

Lie algebras in characteristic 0

Chevalley-Eilenberg cohomology
Deformations of Lie algebras

Characteristic 0 - Deformations

Obstructions.
The study of the converse of this last result leads to the theory of
obstructions.

Definition

Let o € Z2(L, L) be a 2-cocycle. Then  is called integrable if
there is a formal deformation p; of L such that puy = .
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Characteristic 0 - Deformations

Obstructions.
The study of the converse of this last result leads to the theory of
obstructions.

Definition

Let o € Z2(L, L) be a 2-cocycle. Then  is called integrable if
there is a formal deformation p; of L such that puy = .

Definition

A n-order deformation of L is a deformation of the form

n
pE =Y tu
i=0

15/40
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Characteristic 0 - Deformations

Definition

Let uj be a n-order deformation of L. We define for x,y,z € L:

n
obsn(x,y,2) = Y _pi(X, ttns1-i(y, 2)) + pi(y, pins1-i(z, x))
i=1

= Mi(zy Mn—i—l—i(xv)/))‘
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Characteristic 0 - Deformations

Definition

Let uj be a n-order deformation of L. We define for x,y,z € L:

n
obsn(x,y,2) = Y _pi(X, ttns1-i(y, 2)) + pi(y, pins1-i(z, x))
i=1

= Mi(zy Mn+1—i(X7Y))‘

Proposition

Let u be a n-order deformation of L. Then obs, € Z3¢(L,L).
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Characteristic 0 - Deformations

Let pif be a n-order deformation of L. We set

1 1
pett = pd + " g,

for jin+1 € C22(L,L). Then

1 is a n + 1-order deformation of L <= obs, = d2gini1.
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Characteristic 0 - Deformations

Let pif be a n-order deformation of L. We set

1 1
pett = pd + " g,

for jin+1 € C22(L,L). Then

1 is a n + 1-order deformation of L <= obs, = d2gini1.

Q IfH3c(L,L) =0, every 2-cocycle is integrable.

@ A n-order deformation of L extends to a n + 1-order
deformation if and only if the cohomology class of obs,,
vanishes.
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Deformations of Lie algebras

Characteristic 0 - Deformations

Equivalence of formal deformations.

Let V be a vector space, a formal automorphism

o¢ : V[[t]] — V/[t]] is given by a family of linear maps
¢i: L — L satisfying ¢ = > _ t'eh;, with ¢o = id.

i>0
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Characteristic 0 - Deformations

Equivalence of formal deformations.

Let V be a vector space, a formal automorphism

o¢ : V[[t]] — V/[t]] is given by a family of linear maps
¢i: L — L satisfying ¢ = > _ t'eh;, with ¢o = id.

i>0

Definition

Let p+ and vy be two formal deformations of a Lie algebra L. They
are equivalent if there is a formal automorphism ¢ such that, for
x,y €L,

Pe(pe(x,y)) = ve(de(x), pe(y))-

18/40
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@ Every non-trivial deformation of L is equivalent to a
deformation of the form

e = ['7']+Zti/‘i7 Mg € Z%E(L’ L)\B%E(Lv L)
i>q
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@ Every non-trivial deformation of L is equivalent to a
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Q If HZ-(L,L) = 0, every deformation of L is trivial.
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Lie algebras in characteristic 0

Characteristic 0 - Deformations

@ Every non-trivial deformation of L is equivalent to a
deformation of the form

e = ['7']+Zti//“i7 HQGZ%E(L’ L)\B%E(Lv L)
i>q

Q If HZ-(L,L) = 0, every deformation of L is trivial.

Remark: there is a one-to-one correspondence between elements
of HZz(L, L) and infinitesimal elements of non-equivalent
deformations. That is, H%E(L7 L) fully classifies the infinitesimal
deformations of the form u; = [, -] + tu1.
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Introduction to restricted Lie algebras
The p-mappings

Restricted Lie algebras in positive characteristic The restricted cohomology
Restricted deformations

Positive characteristic - restricted Lie algebras

Let IF a field of characteristic p > 2 and A an associative
F-algebra. With the commutator, it's a Lie algebra. The adjoint
representation is then given by

adx(y) = xy — yx.
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Positive characteristic - restricted Lie algebras

Let IF a field of characteristic p > 2 and A an associative
F-algebra. With the commutator, it's a Lie algebra. The adjoint
representation is then given by

adx(y) = xy — yx.

Let m > 0. A quick computation gives

adl'(y Z( ) Y xd yxm.
j=0
Then, if m = p, we obtain

ad?(y) = xPy — yxP = adxs(y).

20/40
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Positive characteristic - restricted Lie algebras

@ We therefore have a nice relation between the commutator
and the Frobenius map x —— xP.

@ Do we have a (similar) relation between the additive law of L
and the Frobenius map?
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Positive characteristic - restricted Lie algebras

@ We therefore have a nice relation between the commutator
and the Frobenius map x —— xP.

@ Do we have a (similar) relation between the additive law of L
and the Frobenius map?

Let A be an associative algebra and let a,b € A. Then,

p—1
(a+b)P =aP+bP+ > si(a,b),
i=1

with is;(a, b) being the coefficient of X'~1 in the polynomial
expression adg;ib(a).

21/40
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Positive characteristic - restricted Lie algebras

@ We therefore have a nice relation between the commutator
and the Frobenius map x —— xP.

@ Do we have a (similar) relation between the additive law of L
and the Frobenius map?

Let A be an associative algebra and let a,b € A. Then,

p—1
(a+b)P =aP+bP+ > si(a,b),
i=1

with is;(a, b) being the coefficient of X'~1 in the polynomial
expression adg;ib(a).

~> it's much less friendly.
21/40
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Positive characteristic - the p-mappings

The following definition is motivated by the previous example.

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map
()Pl L — L satisfying
QO ()P =),xlPl x e[, NeTF;
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Positive characteristic - the p-mappings

The following definition is motivated by the previous example.

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map
()Pl L — L satisfying
QO ()P =),xlPl x e[, NeTF;

p terms

@ [xy] = [[.be. Lyl )
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Positive characteristic - the p-mappings

The following definition is motivated by the previous example.

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map
()Pl L — L satisfying
QO ()P =),xlPl x e[, NeTF;

p terms
@ [x, Y] = [l[x, Y], ¥}, e v);
p—1
© (x+y)lPl =xlPl 4 ylPl 3 " 5(x, y),
i=1

with isi(x,y) the coefficient of Z'~1 in adg;}ry(x). Such a map
()Pl L — L is called p-map.

22/40
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Positive characteristic - the p-mappings

Remarks:

@ Every associative algebra can be endowed with a restricted Lie
algebra structure with the Frobenius map x — xP.
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Positive characteristic - the p-mappings

Remarks:

@ Every associative algebra can be endowed with a restricted Lie
algebra structure with the Frobenius map x — xP.

@ If L is abelian, any p-semilinear map

(A +y) = o(x) +p(y), AeF, x,yelL

is a p-map.
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Positive characteristic - the p-mappings

Remarks:

@ Every associative algebra can be endowed with a restricted Lie
algebra structure with the Frobenius map x — xP.

@ If L is abelian, any p-semilinear map

e(Ax+y) = No(x)+¢(y), AeF, x,y el
is a p-map.
© Explicit expression for the sum of the s;:

p—1 )
;s/'(XJ) = Z @[XL[XQ,[...,[xp_;l,xp]...]7

Xj=Xx or y
Xp=X, Xp_1=y

23/40
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Positive characteristic - the p-mappings

Examples:
1. Let A be an associative algebra and
Der(A) = {D : A — A linear, D(ab) = D(a)b+ aD(b) Va,b € A}.

Then, Der(A) is a restricted Lie algebra with the commutator and
the p-mapping D — DP.
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Positive characteristic - the p-mappings

Examples:
2. Restricted sl>(FF) (charF > 2):
5[2(F) = spanp {X7 Y7 H} )

with brackets [X, Y] = H, [H,X] =2X, [H, Y] = -2Y.
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Positive characteristic - the p-mappings

Examples:
2. Restricted sl>(FF) (charF > 2):
5[2(F) = spanp {X7 Y7 H} )

with brackets [X, Y] = H, [H,X] =2X, [H,Y]=-2Y.
Then,

Xl =yl = o, HlPl = 2p-1H

is the unique p-structure on sl (IF).
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Positive characteristic - the restricted cohomology

Let L be a restricted Lie algebra and M a L-module.

We aim to define the restricted cohomology of L, denoted
CI(L,M), g > 0. We set:

26 /40



Introduction to restricted Lie algebras
The p-mappings

Restricted Lie algebras in positive characteristic The restricted cohomology
Restricted deformations

Positive characteristic - the restricted cohomology

Definition
Let o € C23c(L,M) etw : L — M. We say that w has the
(*)-property w.r.t. ¢ if

Q w(Ax) =Xw(x), NeF, xeL;
Q wix+y)=wx)+wly)+

1 22
> g (=1)*xp.. Xk 10([[---[x1, X2], X38]--0r Xp— k1], Xo—4)5
Xj=Xx ory k=0
X]1=X, Xp=y

with x,y € L, m(x) the number of x; equal to x. We then define

C2(L,M) = {(p,w), ¢ € CZ&(L, M), w has the (x)-property w.r.t. ¢} .
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Positive characteristic - the restricted cohomology

Let € C3(L,M) et B: L x L— M. We say that 3 has the
(xx)-property w.r.t « if

Q 5(-,y) is linear;

Q B(x,Ay) = AB(x,y),

© B + ) =B, ) + Bx: y2) =

hi=yy oryp
hy=y1, ho=yo

with A €F, x,y,y1,¥2 € L and 7w(y1) the number of h; equal to y;. We
then define:

p—2 j
1 g J
E i E (—1y E ( )hp---hpfkflo‘ ([X, ho— ks s bp—jal, [P1s ooy hpja], by
m(y1) k
j=0 k=1

C3(L,M) = {(a,B), a € C3c(L, M), B has the (xx)-property w.r.t o} .
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Positive characteristic - the restricted cohomology

We are in the following situation:
0
0— COLM) 5 CHLM)  CALM)  CHLM)

avec d? = d2..
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Positive characteristic - the restricted cohomology

We are in the following situation:
0 -1 di, 2 & -3
0— C(L,M) —= C.(L,M) — CZ(L, M) — C2(L, M)
avec d? = d2..

~ it remains to build d* and d?.
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Positive characteristic - the restricted cohomology

An element ¢ € C}(L, M) induces a map

ind!(¢)(x) = ¢ (X[p]) —xP7rp(x), xel
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Positive characteristic - the restricted cohomology

An element ¢ € C}(L, M) induces a map

ind!(¢)(x) = ¢ (X[p]) —xP7rp(x), xel

We thus can define:

dl() = (dlep,ind' () -
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Positive characteristic - the restricted cohomology

An element (o, 3) € C2(L, M) induces a map

ind*(a, B)(x,y) = a <X7y“’]>— > (-Dya ([X,y, .-',y],y> +xB(y)-

i+j=p—1

We thus can define:

d2(0, ) = (dga, ind*(@, §))
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Positive characteristic - the restricted cohomology

We are in the following situation:
0 -1 di. 2 4. -3
0— C)(L,M) —= C.(L,M) — CZ(L, M) —= C2(L, M)

avec d? = d2..
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Positive characteristic - the restricted cohomology

We are in the following situation:
0 -1 di. 2 4. -3
0— C)(L,M) —= C.(L,M) — CZ(L, M) —= C2(L, M)

avec d? = d2..
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Positive characteristic - the restricted cohomology

o A restricted 2-cocycle is an element (o, 3) € C2(L, M) such
that
@ « is an ordinary Chevalley-Eilenberg 2-cocycle;

o]y _1)iyi -
Q a(x )= > ()Y a |y, ..yly | + xBy) =0

itj=p-1 j terms
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Positive characteristic - the restricted cohomology

o A restricted 2-cocycle is an element (o, 3) € C2(L, M) such
that

@ « is an ordinary Chevalley-Eilenberg 2-cocycle;

o]y _1)iyi -
Q a(x )= > ()Y a |y, ..yly | + xBy) =0

itj=p-1 j terms

o A restricted 2-coboundary is an element («, 3) € C2(L, M)
such that 3¢ € Hom(L, M),

O a(x,y) = ([x,y]) — xp(y) + yp(x);
Q B(x) = ¢ (xIP!) — xP=1p(x).
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Restricted deformations

Definition
A restricted formal deformation of L is given by two maps

['7 ']t : (Xay) — Z tiu;(x,y), ()[p]t X Z tij'(X)7
i>0 j>0

with pio(x,y) = [x, y], pi skewsymmetric, wo = (-)IPl, w; satisfying
wj(Ax) = AP w(x).
Moreover, [-,-]; et (-)IPlc must satisfy

[x, [y, Z]ele + v, [z, X]e]e + [z, [x, y]e]e = O; (1)
[P ] = [l Ve ey o e 2)
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Restricted deformations

In that framework, we recover all the usual results involving the
cohomology up to order 2, for example:
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Restricted deformations

In that framework, we recover all the usual results involving the
cohomology up to order 2, for example:

Proposition

Let ([-,-]t, ()Pt be a restricted formal deformation of

(L7 ['7 ']7 [P])
© The map wi has the (x)-property w.r.t. uy and (p1,w1) is a
2-cocyle of the restricted cohomology.

/N
SN—
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Restricted deformations

In that framework, we recover all the usual results involving the
cohomology up to order 2, for example:

Proposition

/N
SN—

Let ([-,-]t, ()Pt be a restricted formal deformation of

(L7 ['7 ']7 [P])
© The map wi has the (x)-property w.r.t. uy and (p1,w1) is a
2-cocyle of the restricted cohomology.

@ The second cohomology group H?(L, L) classifies up to
equivalence the infinitesimal restricted deformations of L.
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Restricted Lie-Rinehart algebras

Lie-Rinehart algebras

In this slide, K is a characteristic 0 field.

A Lie-Rinehart algebra is a pair (A, L), where
e L s a Lie K-algebra, endowed with a bracket -, -];
e A is a commutative associative K-algebra,
such that, for x,y € L and a, b € A:
@ There is an action Ax L — L, (a,x) — a- x, making L an
A-module;

@ There isa map p: L — Der(A), x — px, which is both a
Lie algebra morphism and a A-module morphism, called

anchor map;
° [Xva'y] :Px(a) y+a- [Xay]‘
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Restricted Lie-Rinehart Algebras.

Now F is again a characteristic p field. Let A be an associative
commutative F-algebra.

o (A,Der(A),id) is an Lie-Rinehart algebra;
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Restricted Lie-Rinehart Algebras.

Now F is again a characteristic p field. Let A be an associative
commutative F-algebra.

o (A,Der(A),id) is an Lie-Rinehart algebra;

o (Der(A),(:)P) is a restricted Lie algebra;
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Restricted Lie-Rinehart algebras

Restricted Lie-Rinehart Algebras.

Now F is again a characteristic p field. Let A be an associative
commutative F-algebra.

o (A,Der(A),id) is an Lie-Rinehart algebra;
o (Der(A),(:)P) is a restricted Lie algebra;
o If D € Der(A) and a € A, we have

(aD)P = aPDP + (aD)P~%(a)D.
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Restricted Lie-Rinehart Algebras.

Definition
Let A be an associative commutative algebra over a field F of
characteristic p. Then (A, L) is a restricted Lie-Rinehart algebra
if
@ (A, L) is a Lie-Rinehart algebra, with anchor map
p: L — Der(A);
Q (L, (-)[P]> is a restricted Lie algebra;

@ p(xlPl) = p(x)P;
Q (ax)lPl = aPxlPl ¢ p(ax)P~1(a)x, a € A, x € L.
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Thank you for your attention!
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