Algebraic structures emerging from genetic inheritance

Quentin Ehret

Séminaire doctorants IRIMAS

January 16， 2023
IRIMAS HANTEREAITACE
Institut de Recherche en Informatique，Mathématiques，Automatique et Signal
Département de Mathématiques

Introduction

Main reference of this talk: Mary Lynn Reed, Algebraic Structure of Genetic Inheritance, Bull. Am. Math. Soc., 34 (2), 1997.

Contents

(1) Introduction
(2) Genetic algebras

- Genetic background
- Simple Mendelian Inheritance
(3) Algebraic structures
- Non-associative algebras
- Main families of non-associative algebras
- Generalization of the genetic algebras
(4) Application: self-fertilization

Genetic background

- gene: unit of hereditary information (ex: blood type gene).

Genetic background

- gene: unit of hereditary information (ex: blood type gene).
- allele: different forms of a gene (ex: blood type A, B, O).

Genetic background

- gene: unit of hereditary information (ex: blood type gene).
- allele: different forms of a gene (ex: blood type $A, B, O)$.
- chromosome: DNA molecule with part (or all) of the genetic material of an organism.

Genetic background

- gene: unit of hereditary information (ex: blood type gene).
- allele: different forms of a gene (ex: blood type $\mathrm{A}, \mathrm{B}, \mathrm{O}$).
- chromosome: DNA molecule with part (or all) of the genetic material of an organism.
- humans are diploid: double set of chromosomes (one of each parent).

Genetic background

- gene: unit of hereditary information (ex: blood type gene).
- allele: different forms of a gene (ex: blood type $\mathrm{A}, \mathrm{B}, \mathrm{O}$).
- chromosome: DNA molecule with part (or all) of the genetic material of an organism.
- humans are diploid: double set of chromosomes (one of each parent).
- reproduction:
(1) meiosis produces sex cells (gametes) carrying a single set of chromosomes;
(2) male and female gametes fuse \rightsquigarrow produce new cells with double set of chromosomes.

Genetic background

Gametic algebras

- Genotype: alleles carried by chromosomes; Phenotype: alleles that express.

Gametic algebras

- Genotype: alleles carried by chromosomes; Phenotype: alleles that express.
- Here: single gene with two alleles A and B.

Gametic algebras

- Genotype: alleles carried by chromosomes; Phenotype: alleles that express.
- Here: single gene with two alleles A and B.
- Throught the process of reproduction, 3 possible genotypes: AA, BB (homozygotes) and AB (heterozygotes).

Gametic algebras

- Genotype: alleles carried by chromosomes; Phenotype: alleles that express.
- Here: single gene with two alleles A and B.
- Throught the process of reproduction, 3 possible genotypes: AA, BB (homozygotes) and AB (heterozygotes).
- What happens?

\curvearrowright	\mathbf{A}	\mathbf{B}
\mathbf{A}	A	$\frac{1}{2} A+\frac{1}{2} B$
\mathbf{B}	$\frac{1}{2} A+\frac{1}{2} B$	B

Gametic algebras

- Genotype: alleles carried by chromosomes; Phenotype: alleles that express.
- Here: single gene with two alleles A and B.
- Throught the process of reproduction, 3 possible genotypes:

AA, BB (homozygotes) and AB (heterozygotes).

- What happens?

\curvearrowright	\mathbf{A}	\mathbf{B}
\mathbf{A}	A	$\frac{1}{2} A+\frac{1}{2} B$
\mathbf{B}	$\frac{1}{2} A+\frac{1}{2} B$	B

\rightsquigarrow we have defined the gametic algebra on the basis $\{A, B\}$ with the above multiplication table.

Gametic algebras

- Genotype: alleles carried by chromosomes; Phenotype: alleles that express.
- Here: single gene with two alleles A and B.
- Throught the process of reproduction, 3 possible genotypes:

AA, BB (homozygotes) and AB (heterozygotes).

- What happens?

\curvearrowright	\mathbf{A}	\mathbf{B}
\mathbf{A}	A	$\frac{1}{2} A+\frac{1}{2} B$
\mathbf{B}	$\frac{1}{2} A+\frac{1}{2} B$	B

\rightsquigarrow we have defined the gametic algebra on the basis $\{A, B\}$ with the above multiplication table.
\rightsquigarrow not associative: $A(A B)=\frac{3}{4} A+\frac{1}{4} B \neq(A A) B=\frac{1}{2} A+\frac{1}{2} B$.

Zygotic algebras

- For humans (for example), it is more complicated:
cell with alleles $A B \xrightarrow{\text { meiosis }}\left\{\begin{array}{l}\text { gamete carrying } A \text { with proba } 0.5 \\ \text { gamete carrying } B \text { with proba } 0.5 .\end{array}\right.$

Zygotic algebras

- For humans (for example), it is more complicated:
cell with alleles $A B \xrightarrow{\text { meiosis }}\left\{\begin{array}{l}\text { gamete carrying } A \text { with proba } 0.5 \\ \text { gamete carrying } B \text { with proba } 0.5 .\end{array}\right.$
- So in that case, $A B$ shall be understood as $\frac{1}{2} A+\frac{1}{2} B$.

Zygotic algebras

- For humans (for example), it is more complicated:
cell with alleles $A B \xrightarrow{\text { meiosis }}\left\{\begin{array}{l}\text { gamete carrying } A \text { with proba } 0.5 \\ \text { gamete carrying } B \text { with proba } 0.5 .\end{array}\right.$
- So in that case, $A B$ shall be understood as $\frac{1}{2} A+\frac{1}{2} B$.
- So $(A B)(A B)=\frac{1}{4} A A+\frac{1}{2} A B+\frac{1}{4} B B$.

Zygotic algebras

We therefore obtain an algebra on the basis $\{A A, A B, B B\}$ with multiplication given by

\curvearrowright	$\mathbf{A A}$	$\mathbf{A B}$	$\mathbf{B B}$
$\mathbf{A A}$	$A A$	$\frac{1}{2}(A A+A B)$	$A B$
$\mathbf{A B}$	$\frac{1}{2}(A A+A B)$	$\frac{1}{4} A A+\frac{1}{2} A B+\frac{1}{4} B B$	$\frac{1}{2}(A B+B B)$
$\mathbf{B B}$	$A B$	$\frac{1}{2}(A B+B B)$	$B B$

\rightsquigarrow it is called the Zygotic algebra.

Non-associative algebras

Let $(V,+, \cdot)$ be a (finite dimensional) vector space over a field \mathbb{K} ($\mathbb{K}=\mathbb{R}$ for example).

Definition

Suppose that V is endowed with a bilinear map $*: V \times V \rightarrow V$, distributive with respect to + (multiplication). Then $(V,+, \cdot, *)$ is called a (non-associative) algebra.

Non-associative algebras

Let $(V,+, \cdot)$ be a (finite dimensional) vector space over a field \mathbb{K} ($\mathbb{K}=\mathbb{R}$ for example).

Definition

Suppose that V is endowed with a bilinear map $*: V \times V \rightarrow V$, distributive with respect to + (multiplication). Then $(V,+, \cdot, *)$ is called a (non-associative) algebra.

Suppose that $\left\{e_{1}, \cdots, e_{n}\right\}$ is a basis of V as \mathbb{K}-vector space:

$$
\forall v \in V, \quad \exists\left(\lambda_{i}\right)_{i} \in \mathbb{K}, \quad v=\sum_{i=1}^{n} \lambda_{i} e_{i} .
$$

\rightsquigarrow it is enough to define the multiplication of the basis of V.

Non-associative algebras

$$
e_{i} * e_{j}=\sum_{k=1}^{n} C_{i, j}^{k} e_{k}, \quad C_{i, j}^{k} \in \mathbb{K} .
$$

The multiplication is entirely determined by those n^{3} structure constants.

Non-associative algebras

$$
e_{i} * e_{j}=\sum_{k=1}^{n} c_{i, j}^{k} e_{k}, \quad C_{i, j}^{k} \in \mathbb{K} .
$$

The multiplication is entirely determined by those n^{3} structure constants.

Example: $V=<e_{1}, e_{2}>$ with multiplication

\curvearrowright	\mathbf{e}_{1}	\mathbf{e}_{2}
\mathbf{e}_{1}	e_{1}	e_{2}
\mathbf{e}_{2}	e_{2}	e_{2}

$C_{1,1}^{1}=1, C_{1,1}^{2}=0, C_{1,2}^{1}=C_{2,1}^{1}=0, C_{1,2}^{2}=C_{2,1}^{2}=1, C_{2,2}^{1}=0, C_{2,2}^{2}=1$.

Associative algebras

Definition

Let $(V, *)$ be a non-associative algebra. It is associative if * satisfies

$$
a *(b * c)=(a * b) * c, \quad \forall a, b, c \in V
$$

Examples: $(\mathbb{R}, \times),\left(M_{n}(\mathbb{R})\right.$, matrix product $), \ldots$

Associative algebras

Definition

Let $(V, *)$ be a non-associative algebra. It is associative if * satisfies

$$
a *(b * c)=(a * b) * c, \quad \forall a, b, c \in V
$$

Examples: $(\mathbb{R}, \times),\left(M_{n}(\mathbb{R})\right.$, matrix product $), \ldots$

Proposition

$(V, *)$ is associative if and only if its structure constants satisfy

$$
\sum_{l=1}^{n}\left(C_{j, k}^{l} C_{i, l}^{p}-C_{i, j}^{\prime} C_{l, k}^{p}\right)=0, \quad \forall 1 \leq i, j, k, p \leq n
$$

Commutative algebras

Definition

Let $(V, *)$ be an algebra. It is commutative if $*$ satisfies

$$
a * b=b * a, \quad \forall a, b \in V
$$

Example: (\mathbb{R}, \times); Counterexample: $\left(M_{n}(\mathbb{R})\right.$, matrix product $)$

Commutative algebras

Definition

Let $(V, *)$ be an algebra. It is commutative if $*$ satisfies

$$
a * b=b * a, \quad \forall a, b \in V
$$

Example: (\mathbb{R}, \times); Counterexample: $\left(M_{n}(\mathbb{R})\right.$, matrix product)

Proposition

$(V, *)$ is commutative if and only if its structure constants satisfy

$$
C_{i, j}^{k}-C_{j, i}^{k}=0, \quad \forall 1 \leq i, j, k \leq n
$$

Lie algebras

Definition

Let $(V, *)$ be an algebra. It is called Lie algebra if $*$ satisfies

$$
\begin{align*}
a * b & =-b * a, \quad \forall a, b \in A . \tag{1}\\
0 & =a *(b * c)+b *(c * a)+c *(a * b), \quad \forall a, b, c \in A . \tag{2}
\end{align*}
$$

Examples: $(V, * \equiv 0) ;\left(M_{n}(\mathbb{R}), U * V=U V-V U\right)$

Jordan algebras

Definition

Let $(V, *)$ be an algebra. It is called Jordan algebra it is commutative and if $*$ satisfies

$$
(a * b) *(a * a)=a *(b *(a * a)), \quad \forall a, b \in A
$$

Example: V associative $\Rightarrow\left(V, a * b=\frac{a b+b a}{2}\right)$ is a Jordan algebra.

General gametic algebras

In many situations, the frequencies are not 0.5 , but other recombination rules appear. We consider a population with n distincts alleles $\left(a_{1}, \cdots, a_{n}\right)$ of a given gene.

Definition

Take $\mathfrak{g}=<a_{1}, \cdots, a_{n}>$ the (free) vector space on n generators.
Consider the multiplication $a_{i} * a_{j}=\sum_{k=1}^{n} \gamma_{i, j}^{k} a_{k}$, satisfying

$$
\begin{gather*}
0 \leq \gamma_{i, j}^{k} \leq 1 \tag{3}\\
\sum_{k=1}^{n} \gamma_{i, j}^{k}=1 \tag{4}\\
\gamma_{i, j}^{k}=\gamma_{j, i}^{k} \tag{5}
\end{gather*}
$$

Then $(\mathfrak{g}, *)$ is called the general gametic algebra.

General zygotic algebras

Denote $a_{i j}=a_{i} a_{j}$.

Definition

Take $\mathfrak{z}=<a_{i j}>_{i \leq j}$. Consider the multiplication
$a_{i j} * a_{p q}=\sum_{s=1}^{n} \sum_{k=1}^{s} \zeta_{(i j),(p q)}^{k, s} a_{k s}$, satisfying

$$
\begin{align*}
0 \leq \zeta_{(i j),(p q)}^{k, s} & \leq 1 \tag{6}\\
\sum_{k, s=1}^{n} \zeta_{(i j),(p q)}^{k, s} & =1, \quad i \leq j, p \leq q, \quad k \leq s ; \tag{7}\\
\zeta_{(i j),(p q)}^{k, s} & =\zeta_{(p q),(i j)}^{k, s} \tag{8}
\end{align*}
$$

Then $(\mathfrak{z}, *)$ is called the general zygotic algebra.

Links between the structures

Proposition

Consider the gametic algebra \mathfrak{g} given by its structure constants $\gamma_{i, j}^{k}$. Define a new algebra \mathfrak{z} with the following structure constants:

$$
\zeta_{(i j),(p q)}^{k, s}=\left\{\begin{array}{l}
\gamma_{i, j}^{k} \gamma_{p, q}^{s}+\gamma_{i, j}^{s} \gamma_{p, q}^{k}, \text { if } k<s ; \tag{9}\\
\gamma_{i, j}^{k} \gamma_{p, q}^{s} \text { if } k=s .
\end{array}\right.
$$

Then, \mathfrak{z} is a zygotic algebra.

Links between the structures

Proposition

Consider the gametic algebra \mathfrak{g} given by its structure constants $\gamma_{i, j}^{k}$. Define a new algebra \mathfrak{z} with the following structure constants:

$$
\zeta_{(i j),(p q)}^{k, s}=\left\{\begin{array}{l}
\gamma_{i, j}^{k} \gamma_{p, q}^{s}+\gamma_{i, j}^{s} \gamma_{p, q}^{k}, \text { if } k<s ; \tag{9}\\
\gamma_{i, j}^{k} \gamma_{p, q}^{s} \text { if } k=s .
\end{array}\right.
$$

Then, \mathfrak{z} is a zygotic algebra.
Those identities come from a construction called commutative duplication:

$$
\mathfrak{z}=\frac{\mathfrak{g} \otimes \mathfrak{g}}{I}, \quad I=<x \otimes y-y \otimes x>
$$

It is a commutative algebra with multiplication

$$
(a \otimes b) *(c \otimes d)=(a b \otimes c d) .
$$

Application: self-fertilization

- For a given population, we consider a gene having 2 alleles A, B and following the zygotic algebra rule of inheritance.

Application: self-fertilization

- For a given population, we consider a gene having 2 alleles A, B and following the zygotic algebra rule of inheritance.
- We have three possible genotypes: $A A, A B, B B$.

Application: self-fertilization

- For a given population, we consider a gene having 2 alleles A, B and following the zygotic algebra rule of inheritance.
- We have three possible genotypes: $A A, A B, B B$.
- Suppose that the first generation have a distribution

$$
F_{0}=\lambda A A+\mu A B+\epsilon B B, \quad \lambda, \mu, \epsilon \in \mathbb{R}
$$

\rightsquigarrow what will be the state of the population after n steps of self-fertilization?

Application: self-fertilization

Let's compute the first step F_{1}.

$$
\begin{aligned}
F_{1} & =\lambda(A A * A A)+\mu(A B * A B)+\epsilon(B B * B B) \\
& =\lambda A A+\mu\left(\frac{1}{4} A A+\frac{1}{2} A B+\frac{1}{4} B B\right)+\epsilon B B \\
& =\left(\lambda+\frac{1}{4} \mu\right) A A+\frac{\mu}{2} A B+\left(\epsilon+\frac{1}{4} \mu\right) B B
\end{aligned}
$$

Application: self-fertilization

Let's introduce a sequence $\left(u_{n}\right)$:

$$
\begin{aligned}
& u_{0}=F_{0} \\
& u_{1}=F_{1}-F_{0}=\frac{1}{2} \mu\left(\frac{1}{2} A A-A B+\frac{1}{2} B B\right) \\
& u_{2}=F_{2}-F_{1}=\frac{1}{4} \mu\left(\frac{1}{2} A A-A B+\frac{1}{2} B B\right) \\
& \vdots \\
& u_{n}=F_{n}-F_{n-1}=\frac{1}{2^{n}} \mu\left(\frac{1}{2} A A-A B+\frac{1}{2} B B\right) .
\end{aligned}
$$

Application: self-fertilization

$$
u_{n}=F_{n}-F_{n-1}=\frac{1}{2^{n}} \mu\left(\frac{1}{2} A A-A B+\frac{1}{2} B B\right) .
$$

Therefore we have

$$
\begin{aligned}
\sum_{i=1}^{n} u_{i} & =\left(\frac{1}{2} A A-A B+\frac{1}{2} B B\right)\left(\frac{1}{2}+\frac{1}{4}+\cdots \frac{1}{2^{n}}\right) \mu \\
& =\mu\left(1-\frac{1}{2^{n}}\right)\left(\frac{1}{2} A A-A B+\frac{1}{2} B B\right) .
\end{aligned}
$$

Application: self-fertilization

Then,

$$
F_{n}=\left(F_{n}-F_{n-1}\right)+\left(F_{n-1}-F_{n-2}\right)+\cdots+\left(F_{1}-F_{0}\right)+F_{0} .
$$

Application: self-fertilization

Then,

$$
\begin{aligned}
F_{n} & =\left(F_{n}-F_{n-1}\right)+\left(F_{n-1}-F_{n-2}\right)+\cdots+\left(F_{1}-F_{0}\right)+F_{0} . \\
& =u_{n}+u_{n-1}+\cdots+u_{1}+F_{0}
\end{aligned}
$$

Application: self-fertilization

Then,

$$
\begin{aligned}
F_{n} & =\left(F_{n}-F_{n-1}\right)+\left(F_{n-1}-F_{n-2}\right)+\cdots+\left(F_{1}-F_{0}\right)+F_{0} . \\
& =u_{n}+u_{n-1}+\cdots+u_{1}+F_{0} \\
& =\frac{1}{2^{n}} \mu\left(\frac{1}{2} A A-A B+\frac{1}{2} B B\right)+\lambda A A+\mu A B+\epsilon B B
\end{aligned}
$$

Application: self-fertilization

Then,

$$
\begin{aligned}
F_{n} & =\left(F_{n}-F_{n-1}\right)+\left(F_{n-1}-F_{n-2}\right)+\cdots+\left(F_{1}-F_{0}\right)+F_{0} \\
& =u_{n}+u_{n-1}+\cdots+u_{1}+F_{0} \\
& =\frac{1}{2^{n}} \mu\left(\frac{1}{2} A A-A B+\frac{1}{2} B B\right)+\lambda A A+\mu A B+\epsilon B B \\
& =\left(\lambda+\frac{1}{2} \mu-\frac{\mu}{2^{n+1}}\right) A A+\frac{\mu}{2^{n}} A B+\left(\frac{1}{2} \mu+\epsilon-\frac{\mu}{2^{n+1}}\right) B B
\end{aligned}
$$

Application: self-fertilization

Then,

$$
\begin{aligned}
F_{n} & =\left(F_{n}-F_{n-1}\right)+\left(F_{n-1}-F_{n-2}\right)+\cdots+\left(F_{1}-F_{0}\right)+F_{0} . \\
& =u_{n}+u_{n-1}+\cdots+u_{1}+F_{0} \\
& =\frac{1}{2^{n}} \mu\left(\frac{1}{2} A A-A B+\frac{1}{2} B B\right)+\lambda A A+\mu A B+\epsilon B B \\
& =\left(\lambda+\frac{1}{2} \mu-\frac{\mu}{2^{n+1}}\right) A A+\frac{\mu}{2^{n}} A B+\left(\frac{1}{2} \mu+\epsilon-\frac{\mu}{2^{n+1}}\right) B B \\
& \xrightarrow[n \rightarrow \infty]{\longrightarrow}\left(\lambda+\frac{\mu}{2}\right) A A+\left(\frac{\mu}{2}+\epsilon\right) B B .
\end{aligned}
$$

Application: self-fertilization

Then,

$$
\begin{aligned}
F_{n} & =\left(F_{n}-F_{n-1}\right)+\left(F_{n-1}-F_{n-2}\right)+\cdots+\left(F_{1}-F_{0}\right)+F_{0} . \\
& =u_{n}+u_{n-1}+\cdots+u_{1}+F_{0} \\
& =\frac{1}{2^{n}} \mu\left(\frac{1}{2} A A-A B+\frac{1}{2} B B\right)+\lambda A A+\mu A B+\epsilon B B \\
& =\left(\lambda+\frac{1}{2} \mu-\frac{\mu}{2^{n+1}}\right) A A+\frac{\mu}{2^{n}} A B+\left(\frac{1}{2} \mu+\epsilon-\frac{\mu}{2^{n+1}}\right) B B \\
& \xrightarrow[n \rightarrow \infty]{\longrightarrow}\left(\lambda+\frac{\mu}{2}\right) A A+\left(\frac{\mu}{2}+\epsilon\right) B B .
\end{aligned}
$$

\rightsquigarrow self-fertilization kills heterozygotes!

Last Slide of the Day

Thank you for your attention!

