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Introduction

Main reference of this talk: Mary Lynn Reed, Algebraic
Structure of Genetic Inheritance, Bull. Am. Math. Soc., 34 (2),
1997.
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Genetic background

@ gene: unit of hereditary information (ex: blood type gene).

o allele: different forms of a gene (ex: blood type A, B, O).

e chromosome: DNA molecule with part (or all) of the genetic
material of an organism.

@ humans are diploid: double set of chromosomes (one of each
parent).

@ reproduction:

@ meiosis produces sex cells (gametes) carrying a single set of
chromosomes;

@ male and female gametes fuse ~+ produce new cells with
double set of chromosomes.
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@ Genotype: alleles carried by chromosomes;
Phenotype: alleles that express.

@ Here: single gene with two alleles A and B.

@ Throught the process of reproduction, 3 possible genotypes:
AA, BB (homozygotes) and AB (heterozygotes).

N A B
@ What happens? | A A %A + %B
1 1
B | ;A+ 3B B

~+ we have defined the gametic algebra on the basis {A, B} with
the above multiplication table.
~+ not associative: A(AB) = 3A+ 1B # (AA)B = 3A+ 1B.
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@ For humans (for example), it is more complicated:

- amete carrying A with proba 0.5
cell with alleles AB ™5 {g Mete carrying = with pr

gamete carrying B with proba 0.5.

@ So in that case, AB shall be understood as %A + %B.

e So (AB)(AB) = 1AA+ 1AB + 1BB.
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Zygotic algebras

We therefore obtain an algebra on the basis {AA, AB, BB} with
multiplication given by

~ AA AB BB
AA AA 1(AA+ AB) AB
AB | J(AA+ AB) | 3AA+ 3AB+ 3BB | 3(AB + BB)
BB AB 3(AB + BB) BB

~> it is called the Zygotic algebra.
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Algebraic structures

Non-associative algebras

Let (V,+,) be a (finite dimensional) vector space over a field K
(K = R for example).

Definition

Suppose that V is endowed with a bilinear map x : V x V — V,
distributive with respect to + (multiplication). Then (V,+, -, %) is
called a (non-associative) algebra.
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Non-associative algebras

Let (V,+,) be a (finite dimensional) vector space over a field K
(K =R for example).

Definition

Suppose that V is endowed with a bilinear map x : V x V — V,
distributive with respect to + (multiplication). Then (V,+, -, %) is
called a (non-associative) algebra.

Suppose that {e;, - ,ep} is a basis of V as K-vector space:

YveV, I(N)ieK, v=>) \e.
i=1

~> it is enough to define the multiplication of the basis of V.
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Algebraic structures

Non-associative algebras

n
_ E k k
€ix €& = CiJek, CI’JGK
k=1

The multiplication is entirely determined by those n® structure
constants.
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Algebraic structures .
& Generalization of

Non-associative algebras

n
_E k k
€ix €& = CiJek, CI’JGK
k=1

The multiplication is entirely determined by those n® structure
constants.

m | e1] | e

Example: V =< e, & > with multiplication | e; | ¢; | &

€ | & | &

C11,1 =1, C12,1 =0, C11,2 = C21,1 =0, C12,2 = C22,1 =1, C21,2 =0, C22,2 =1
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Associative algebras

Definition
Let (V, %) be a non-associative algebra. It is associative if x

satisties
ax(bxc)=(axb)xc, Va,bceV.

Examples: (R, x), (M,(RR), matrix product), ...

Proposition

(V, %) is associative if and only if its structure constants satisfy

Z (C:]!,kciljl = C,'IJCI,?/() == 07 v 1 S ia.jv k7p S n.
I:1
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Algebraic structures B . :
& Generalization of the genetic algebras

Commutative algebras

Definition
Let (V,*) be an algebra. It is commutative if x satisfies

axb=>bxa, VabeV.

Example: (R, x); Counterexample: (M,(R), matrix product)
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Commutative algebras

Definition

Let (V,*) be an algebra. It is commutative if x satisfies

axb=>bxa, VabeV.

Example: (R, x); Counterexample: (M,(R), matrix product)

Proposition

(V, ) is commutative if and only if its structure constants satisfy

C—CN=0, V1<ijk<n
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Algebraic structures B :
& Generalization of the genetic algebras

Lie algebras

Definition
Let (V,*) be an algebra. It is called Lie algebra if x satisfies

axb=—bxa, VabeA. (1)
O=ax(bxc)+bx(cxa)+cx(axb), Va,bce A (2)

Examples: (V,x =0); (M,(R),U=xV = UV — W)
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Non-associative algebras
Main families of non-associative algebras

Algebraic structures B :
& Generalization of the genetic algebras

Jordan algebras

Definition
Let (V,x) be an algebra. It is called Jordan algebra it is
commutative and if x satisfies

(axb)*(axa)=ax(bx(axa)), Va,beA.

Example: V associative = (V,a*x b= %) is a Jordan algebra.
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Algebraic structures

General gametic algebras

In many situations, the frequencies are not 0.5, but other
recombination rules appear. We consider a population with n

distincts alleles (a1, - -, a,) of a given gene.
Take g =< a1,--- ,ap > the (free) vector space on n generators.
n
Consider the multiplication a; * a; = Z 'y,!( jak, satisfying
k=1
0<~f5<1 (3)
n
k
Vig =1 (4)
k=1
k k
Yij = Vi (5)

Then (g, %) is called the general gametic algebra.
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Non-associative algebras
Main families of non-associative algebras

Algebraic structures B .
g Generalization of the genetic algebras

General zygotic algebras

Denote a;; = a;a;.

[Beimden

Take 3 =< a,J > . Consider the multiplication

djj * dpg = Z Z C (i/),(pq) Fks> satisfying

s=1 k=1
k,s
0= iy pa) <1 ©)
C(k,"';(pq) = 1> ! S./? p S q, k < S, (7)
k,s=1
¢S o =G (8)

Then (3, %) is called the general zygotic algebra.
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Non-associative algebras
Main families of non-associative algebras

Algebraic structures Generalization of the genetic algebras

Links between the structures

Proposition

Consider the gametic algebra g given by its structure constants
’yf‘ o Define a new algebra 3 with the following structure constants:

Ck »S — ’YIJVp q + ’yl’_/ﬁyp q’ Ifk < S (9)
(if).(pq) — ’Y,ﬂp qifk=

Then, 3 is a zygotic algebra.
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Non-associative algebras
. Main families of non-associative algebras
Algebraic structures . . -
Generalization of the genetic algebras

Links between the structures

Proposition
Consider the gametic algebra g given by its structure constants
’yf‘ o Define a new algebra 3 with the following structure constants:

Ck »S ’yldfyp q + ’yl’_/ﬁyp q’ Ifk < S (9)
(i)-(pa) — 7 e —
’Vu% q'!
Then, 3 is a zygotic algebra. )

Those identities come from a construction called commutative

duplication:

3:@, [ =<xQy—-y®@x>.

It is a commutative algebra with multiplication
(a®b)*x(c®d) =(ab® cd). o
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o For a given population, we consider a gene having 2 alleles
A, B and following the zygotic algebra rule of inheritance.
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Application: self-fertilization

Application: self-fertilization

o For a given population, we consider a gene having 2 alleles
A, B and following the zygotic algebra rule of inheritance.

@ We have three possible genotypes: AA, AB, BB.

@ Suppose that the first generation have a distribution
Fo = MA+ uAB+eBB, A u,e € R.

~> what will be the state of the population after n steps of
self-fertilization?
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Application: self-fertilization

Application: self-fertilization

Let's compute the first step Fi.

Fi = A(AA % AA) + ju(AB x AB) + ¢(BB * BB)

1 1 1
= MA + <4AA +5AB+ 433) +eBB

1 W 1
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Application: self-fertilization

Application: self-fertilization

Let's introduce a sequence (uy):

ug = Fo
1 1 1
=F —Fo=-u(=AA—AB+ =BB
up F1 Fo 2,u<2AA +2 )
CF_F =t <1AAAB+IBB)
up = 2 1—4M 5 5

1 (1 1
n=Fn—Fo1= o[ SAA - ~BB).
Un = Fn — Fp1 2nu<2AA AB + 5 )
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Application: self-fertilization

1 1
n = Fp— Foo1= o0 <2AA AB—|—2BB)

Therefore we have

n 1 1 1 1 1
.= (-AA— AB+ =-BB
;u (2 +5 ><2+ +- 2n)u

1 1 1
= 11— — —AA—-— AB + —BB ).
“( 2"> (2 T3 )
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Application: self-fertilization

Then,

Fn=(Fn— Fn1) + (Foe1 — Fa—2) + -+ + (F1 — Fo) + Fo.



Application: self-fertilization

Application: self-fertilization

Then,

Fn=(Fn— Fn1) + (Foe1 — Fa—2) + -+ + (F1 — Fo) + Fo.
=Up+Up1+---+u+F
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Application: self-fertilization

Then,

Fn—(F_Fn 1)+(nl_Fn—2)+"'+(F1_FO)+FO-
—un+un 1+"'+U1+FO
1

= ok (AA AB + - BB>+AAA+uAB+eBB
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Then,

Fn—(F _Fn 1)+( n— 1_Fn—2)+"'+(F1_FO)+FO-
—un+un 1+"'+U1+FO

1
_ (AA AB + * BB)+AAA+uAB+eBB

1 1 "
= (/\+2M—2n+1)AA+2nAB+ <2M+€—2,7H> BB
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Application: self-fertilization

Application: self-fertilization

Then,

Fn—(F _Fn 1)+( n— 1_Fn—2)+"'+(F1_FO)+FO-
—un+un 1+"'+U]_+FO

1
_ (AA AB + * BB)+AAA+uAB+eBB

1 1 "
= (/\+2M—2n+1)AA+2nAB+ <2M+€—2,7H> BB

N <A+) AA + (“+e) BB.
n—oo 2 2

~ self-fertilization kills heterozygotes!
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