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Main reference of this talk: Mary Lynn Reed, Algebraic
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Genetic background

gene: unit of hereditary information (ex: blood type gene).

allele: different forms of a gene (ex: blood type A, B, O).

chromosome: DNA molecule with part (or all) of the genetic
material of an organism.

humans are diploid: double set of chromosomes (one of each
parent).

reproduction:
1 meiosis produces sex cells (gametes) carrying a single set of

chromosomes;
2 male and female gametes fuse ⇝ produce new cells with

double set of chromosomes.
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Gametic algebras

Genotype: alleles carried by chromosomes;
Phenotype: alleles that express.

Here: single gene with two alleles A and B.

Throught the process of reproduction, 3 possible genotypes:
AA, BB (homozygotes) and AB (heterozygotes).

What happens?

↷ A B

A A 1
2A+ 1

2B

B 1
2A+ 1

2B B

⇝ we have defined the gametic algebra on the basis {A,B} with
the above multiplication table.
⇝ not associative: A(AB) = 3

4A+ 1
4B ̸= (AA)B = 1

2A+ 1
2B.
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Zygotic algebras

For humans (for example), it is more complicated:

cell with alleles AB
meiosis−→

{
gamete carrying A with proba 0.5

gamete carrying B with proba 0.5.

So in that case, AB shall be understood as 1
2A+ 1

2B.

So (AB)(AB) = 1
4AA+ 1

2AB + 1
4BB.
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Zygotic algebras

We therefore obtain an algebra on the basis {AA,AB,BB} with
multiplication given by

↷ AA AB BB

AA AA 1
2(AA+ AB) AB

AB 1
2(AA+ AB) 1

4AA+ 1
2AB + 1

4BB
1
2(AB + BB)

BB AB 1
2(AB + BB) BB

⇝ it is called the Zygotic algebra.
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Non-associative algebras

Let (V ,+, ·) be a (finite dimensional) vector space over a field K
(K = R for example).

Definition

Suppose that V is endowed with a bilinear map ∗ : V × V → V ,
distributive with respect to + (multiplication). Then (V ,+, ·, ∗) is
called a (non-associative) algebra.

Suppose that {e1, · · · , en} is a basis of V as K-vector space:

∀v ∈ V , ∃ (λi )i ∈ K, v =
n∑

i=1

λiei .

⇝ it is enough to define the multiplication of the basis of V .

9 / 23



Introduction
Genetic algebras

Algebraic structures
Application: self-fertilization

Non-associative algebras
Main families of non-associative algebras
Generalization of the genetic algebras

Non-associative algebras

Let (V ,+, ·) be a (finite dimensional) vector space over a field K
(K = R for example).

Definition

Suppose that V is endowed with a bilinear map ∗ : V × V → V ,
distributive with respect to + (multiplication). Then (V ,+, ·, ∗) is
called a (non-associative) algebra.

Suppose that {e1, · · · , en} is a basis of V as K-vector space:

∀v ∈ V , ∃ (λi )i ∈ K, v =
n∑

i=1

λiei .

⇝ it is enough to define the multiplication of the basis of V .

9 / 23



Introduction
Genetic algebras

Algebraic structures
Application: self-fertilization

Non-associative algebras
Main families of non-associative algebras
Generalization of the genetic algebras

Non-associative algebras

ei ∗ ej =
n∑

k=1

C k
i ,jek , C k

i ,j ∈ K .

The multiplication is entirely determined by those n3 structure
constants.

Example: V =< e1, e2 > with multiplication

↷ e1 e2

e1 e1 e2

e2 e2 e2

C 1
1,1 = 1, C 2

1,1 = 0, C 1
1,2 = C 1

2,1 = 0, C 2
1,2 = C 2

2,1 = 1, C 1
2,2 = 0, C 2

2,2 = 1.
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Associative algebras

Definition

Let (V , ∗) be a non-associative algebra. It is associative if ∗
satisfies

a ∗ (b ∗ c) = (a ∗ b) ∗ c, ∀a, b, c ∈ V .

Examples: (R, ×), (Mn(R),matrix product), ...

Proposition

(V , ∗) is associative if and only if its structure constants satisfy

n∑
l=1

(
C l
j ,kC

p
i ,l − C l

i ,jC
p
l ,k

)
= 0, ∀ 1 ≤ i , j , k, p ≤ n.
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Commutative algebras

Definition

Let (V , ∗) be an algebra. It is commutative if ∗ satisfies

a ∗ b = b ∗ a, ∀a, b ∈ V .

Example: (R, ×); Counterexample: (Mn(R),matrix product)

Proposition

(V , ∗) is commutative if and only if its structure constants satisfy

C k
i ,j − C k

j ,i = 0, ∀ 1 ≤ i , j , k ≤ n.
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Lie algebras

Definition

Let (V , ∗) be an algebra. It is called Lie algebra if ∗ satisfies

a ∗ b = −b ∗ a, ∀a, b ∈ A. (1)

0 = a ∗ (b ∗ c) + b ∗ (c ∗ a) + c ∗ (a ∗ b), ∀a, b, c ∈ A. (2)

Examples: (V , ∗ ≡ 0); (Mn(R),U ∗ V = UV − VU)
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Jordan algebras

Definition

Let (V , ∗) be an algebra. It is called Jordan algebra it is
commutative and if ∗ satisfies

(a ∗ b) ∗ (a ∗ a) = a ∗ (b ∗ (a ∗ a)), ∀a, b ∈ A.

Example: V associative ⇒ (V , a ∗ b = ab+ba
2 ) is a Jordan algebra.
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General gametic algebras

In many situations, the frequencies are not 0.5, but other
recombination rules appear. We consider a population with n
distincts alleles (a1, · · · , an) of a given gene.

Definition

Take g =< a1, · · · , an > the (free) vector space on n generators.

Consider the multiplication ai ∗ aj =
n∑

k=1

γk
i ,jak , satisfying

0 ≤ γk
i ,j ≤ 1 (3)

n∑
k=1

γk
i ,j = 1 (4)

γk
i ,j = γk

j ,i . (5)

Then (g, ∗) is called the general gametic algebra.
15 / 23
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General zygotic algebras

Denote aij = aiaj .

Definition

Take z =< aij >i≤j . Consider the multiplication

aij ∗ apq =
n∑

s=1

s∑
k=1

ζk,s
(ij),(pq)aks , satisfying

0 ≤ ζk,s
(ij),(pq) ≤ 1 (6)

n∑
k,s=1

ζk,s
(ij),(pq) = 1, i ≤ j , p ≤ q, k ≤ s; (7)

ζk,s
(ij),(pq) = ζk,s

(pq),(ij). (8)

Then (z, ∗) is called the general zygotic algebra.
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Links between the structures

Proposition

Consider the gametic algebra g given by its structure constants
γk
i ,j . Define a new algebra z with the following structure constants:

ζk,s
(ij),(pq) =

{
γk
i ,jγ

s
p,q + γs

i ,jγ
k
p,q, if k < s;

γk
i ,jγ

s
p,q if k = s.

(9)

Then, z is a zygotic algebra.

Those identities come from a construction called commutative
duplication:

z =
g ⊗ g

I
, I =< x ⊗ y − y ⊗ x > .

It is a commutative algebra with multiplication

(a ⊗ b) ∗ (c ⊗ d) = (ab ⊗ cd).
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For a given population, we consider a gene having 2 alleles
A,B and following the zygotic algebra rule of inheritance.

We have three possible genotypes: AA, AB, BB.

Suppose that the first generation have a distribution

F0 = λAA+ µAB + ϵBB, λ, µ, ϵ ∈ R .

⇝ what will be the state of the population after n steps of
self-fertilization?
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Application: self-fertilization

Let’s compute the first step F1.

F1 = λ(AA ∗ AA) + µ(AB ∗ AB) + ϵ(BB ∗ BB)

= λAA+ µ

(
1

4
AA+

1

2
AB +

1

4
BB

)
+ ϵBB

=

(
λ +

1

4
µ

)
AA+

µ

2
AB +

(
ϵ +

1

4
µ

)
BB.
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Application: self-fertilization

Let’s introduce a sequence (un):

u0 = F0

u1 = F1 − F0 =
1

2
µ

(
1

2
AA − AB +

1

2
BB

)
u2 = F2 − F1 =

1

4
µ

(
1

2
AA − AB +

1

2
BB

)
...

un = Fn − Fn−1 =
1

2n
µ

(
1

2
AA − AB +

1

2
BB

)
.

20 / 23
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un = Fn − Fn−1 =
1

2n
µ

(
1

2
AA − AB +

1

2
BB

)
.

Therefore we have

n∑
i=1

ui =

(
1

2
AA − AB +

1

2
BB

) (
1

2
+

1

4
+ · · · 1

2n

)
µ

= µ

(
1 − 1

2n

) (
1

2
AA − AB +

1

2
BB

)
.
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Application: self-fertilization

Then,

Fn = (Fn − Fn−1) + (Fn−1 − Fn−2) + · · · + (F1 − F0) + F0.

= un + un−1 + · · · + u1 + F0

=
1

2n
µ

(
1

2
AA − AB +

1

2
BB

)
+ λAA+ µAB + ϵBB

=

(
λ +

1

2
µ − µ

2n+1

)
AA+

µ

2n
AB +

(
1

2
µ + ϵ − µ

2n+1

)
BB

−→
n→∞

(
λ +

µ

2

)
AA+

(
µ

2
+ ϵ

)
BB.

⇝ self-fertilization kills heterozygotes!
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AA − AB +

1

2
BB

)
+ λAA+ µAB + ϵBB

=

(
λ +

1

2
µ − µ

2n+1

)
AA+

µ

2n
AB +

(
1

2
µ + ϵ − µ

2n+1

)
BB

−→
n→∞

(
λ +

µ

2

)
AA+

(
µ

2
+ ϵ

)
BB.

⇝ self-fertilization kills heterozygotes!
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Thank you for your attention!
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