Restricted structures on the Heisenberg algebra

Quentin Ehret

Séminaire doctorants IRMA

March 02, 2023

Département de Mathématiques

Contents

- 1 Introduction : Heisenberg algebras
- 2 Lie algebras
- Restricted Lie algebras in positive characteristic
 Introduction to restricted Lie algebras
 - The *p*-mappings
- 4 Restricted Heisenberg algebras
 - Restricted Heisenberg, p > 2
 - Restricted Heisenberg, p = 2
 - Generalized Heisenberg algebras

Heisenberg algebras

• Consider the momentum vector $p = (p_1, p_2, p_3)$ and the position vector $q = (q_1, q_2, q_3)$ of a particle.

Heisenberg algebras

- Consider the momentum vector $p = (p_1, p_2, p_3)$ and the position vector $q = (q_1, q_2, q_3)$ of a particle.
- Heisenberg's idea (1925) : consider pj and q_j as operators on a certain Hilbert space.

Heisenberg algebras

- Consider the momentum vector $p = (p_1, p_2, p_3)$ and the position vector $q = (q_1, q_2, q_3)$ of a particle.
- Heisenberg's idea (1925) : consider pj and q_j as operators on a certain Hilbert space.
- Commutation relation: $p_j \circ q_k q_k \circ p_j = -\mathbf{i}\hbar\delta_{j,k}$.

Heisenberg algebras

- Consider the momentum vector $p = (p_1, p_2, p_3)$ and the position vector $q = (q_1, q_2, q_3)$ of a particle.
- Heisenberg's idea (1925) : consider pj and q_j as operators on a certain Hilbert space.
- Commutation relation: $p_j \circ q_k q_k \circ p_j = -\mathbf{i}\hbar\delta_{j,k}$.
- Quickly, Weyl recognized a representation of a Lie algebra.

Definition

The (generalized) Heisenberg algebra \mathcal{H}_{2n+1} is the 2n + 1 dimensional vector space spanned by elements $x_1, \dots, x_n, y_1, \dots, y_n, z$ and equipped with a bilinear, antisymmetric operation $[\cdot, \cdot]$ defined by

$$[x_j, y_j] = z, \ [x_j, y_k] = [x_j, x_k] = [x_j, z] = [y_j, z] = 0.$$

Heisenberg algebras

Definition

The (generalized) Heisenberg algebra \mathcal{H}_{2n+1} is the 2n + 1 dimensional vector space spanned by elements $x_1, \dots, x_n, y_1, \dots, y_n, z$ and equipped with a bilinear, antisymmetric operation $[\cdot, \cdot]$ defined by

$$[x_j, y_j] = z, \ [x_j, y_k] = [x_j, x_k] = [x_j, z] = [y_j, z] = 0.$$

Definition (Heisenberg, n = 1)

The three dimensional Heisenberg algebra is spanned by elements x, y, z and equipped with the bilinear, antisymmetric operation $[\cdot, \cdot]$ defined by

$$[x, y] = z, \ [x, z] = [y, z] = 0.$$

Lie algebras

Let ${\mathbb K}$ be an algebraic closed field of characteristic 0.

Definition

Let L be a \mathbb{K} vector space. A Lie bracket on L is a bilinear map $[\cdot, \cdot] : L \times L \longrightarrow L$ satisfying, for $x, y, z \in L$,

$$[x,x] = 0 \ (anticommutativity)$$

2 [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity).

If L is endowed with such a bracket, we call the pair $(L, [\cdot, \cdot])$ a Lie algebra.

イロン 不得 とうほう イロン 二日

Examples:

• $[x, y] = 0 \quad \forall x, y \in L$ (abelian Lie algebra);

Lie algebras

Examples:

- $[x, y] = 0 \quad \forall x, y \in L \text{ (abelian Lie algebra);}$
- Let $\mu: L \times L \longrightarrow L$ be an associative multiplication. Then

$$[x,y] := \mu(x,y) - \mu(y,x)$$

is a Lie bracket on L called commutator.

Lie algebras

Examples:

- $[x, y] = 0 \quad \forall x, y \in L$ (abelian Lie algebra);
- Let $\mu: L \times L \longrightarrow L$ be an associative multiplication. Then

$$[x,y] := \mu(x,y) - \mu(y,x)$$

is a Lie bracket on L called commutator.

Important consequence: $M_n(\mathbb{K})$ endowed with the commutator is a Lie algebra.

Lie algebras

Definition

A linear map $\varphi: L_1 \longrightarrow L_2$ is a Lie algebra map if

 $\varphi\left([x,y]_1\right) = [\varphi(x),\varphi(y)]_2 \ \forall \ x,y \in L_1.$

Definition

A linear map $\varphi: L_1 \longrightarrow L_2$ is a Lie algebra map if

$$\varphi([x,y]_1) = [\varphi(x),\varphi(y)]_2 \ \forall x,y \in L_1.$$

Definition

A representation $\rho: L \longrightarrow End(V)$ is a Lie algebra representation if ρ is a Lie algebra map, that is,

$$\rho([x,y]) = \rho(x)\rho(y) - \rho(y)\rho(x).$$

Remark: One can also say that V is a L-module.

Lie algebras

Crucial example: the adjoint representation

$$\operatorname{\mathsf{ad}}: L \longrightarrow \operatorname{\mathsf{End}}(L)$$

 $x \longmapsto \operatorname{\mathsf{ad}}_x: y \longmapsto [x, y].$

<ロト < 回 ト < 目 ト < 目 ト < 目 ト 目 の Q () 8/26

Definition

Definition

• Center of a Lie algebra L :

$$C(L) = \{x \in L, [x, y] = 0 \forall y \in L\} = ker(ad).$$

• A Lie algebra L is called **nilpotent of order n** if, $\forall x_1, \dots, x_n, y \in L$, we have

$$[x_1, [x_2, \cdots, [x_n, y] \cdots]] = 0.$$

Definition

• Center of a Lie algebra L :

$$C(L) = \{x \in L, [x, y] = 0 \forall y \in L\} = ker(ad).$$

• A Lie algebra L is called nilpotent of order n if, $\forall x_1, \dots, x_n, y \in L$, we have

$$[x_1, [x_2, \cdots, [x_n, y] \cdots]] = 0.$$

Example: The Heisenberg algebra is nilpotent of order 2.

Introduction to restricted Lie algebras The *p*-mappings

Positive characteristic - restricted Lie algebras

Let \mathbb{F} a field of characteristic p > 0 and A an associative \mathbb{F} -algebra. With the commutator, it's a Lie algebra. The adjoint representation is then given by

$$\operatorname{ad}_{x}(y) = xy - yx.$$

Introduction to restricted Lie algebras The *p*-mappings

Positive characteristic - restricted Lie algebras

Let \mathbb{F} a field of characteristic p > 0 and A an associative \mathbb{F} -algebra. With the commutator, it's a Lie algebra. The adjoint representation is then given by

$$\operatorname{ad}_{x}(y) = xy - yx.$$

Let m > 0. A quick computation gives

$$\operatorname{ad}_{x}^{m}(y) = \sum_{j=0}^{m} \binom{m}{j} (-1)^{m-j} x^{j} y x^{m-j}.$$

Introduction to restricted Lie algebras The *p*-mappings

Positive characteristic - restricted Lie algebras

Let \mathbb{F} a field of characteristic p > 0 and A an associative \mathbb{F} -algebra. With the commutator, it's a Lie algebra. The adjoint representation is then given by

$$\operatorname{ad}_{x}(y) = xy - yx.$$

Let m > 0. A quick computation gives

$$\operatorname{ad}_{x}^{m}(y) = \sum_{j=0}^{m} \binom{m}{j} (-1)^{m-j} x^{j} y x^{m-j}.$$

Then, if m = p, we obtain

$$\operatorname{ad}_{X}^{p}(y) = x^{p}y - yx^{p} = \operatorname{ad}_{x^{p}}(y).$$

4 ロ ト イ 部 ト イ き ト イ き ト き の Q (や 10 / 26

Introduction to restricted Lie algebras The *p*-mappings

Positive characteristic - restricted Lie algebras

- We therefore have a nice relation between the commutator and the Frobenius map x → x^p.
- O we have a (similar) relation between the additive law of L and the Frobenius map?

Introduction to restricted Lie algebras The *p*-mappings

Positive characteristic - restricted Lie algebras

- We therefore have a nice relation between the commutator and the Frobenius map x → x^p.
- O we have a (similar) relation between the additive law of L and the Frobenius map?

Lemma

Let A be an associative algebra and let $a, b \in A$. Then,

$$(a+b)^p = a^p + b^p + \sum_{i=1}^{p-1} s_i(a,b),$$

with $is_i(a, b)$ being the coefficient of X^{i-1} in the polynomial expression $ad_{aX+b}^{p-1}(a)$.

Introduction to restricted Lie algebras The *p*-mappings

Positive characteristic - restricted Lie algebras

- We therefore have a nice relation between the commutator and the Frobenius map x → x^p.
- O we have a (similar) relation between the additive law of L and the Frobenius map?

Lemma

Let A be an associative algebra and let $a, b \in A$. Then,

$$(a+b)^p = a^p + b^p + \sum_{i=1}^{p-1} s_i(a,b),$$

with $is_i(a, b)$ being the coefficient of X^{i-1} in the polynomial expression $ad_{aX+b}^{p-1}(a)$.

 \rightsquigarrow it's much less friendly.

Introduction to restricted Lie algebras The *p*-mappings

Positive characteristic - the *p*-mappings

The following definition is motivated by the previous example.

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map $(\cdot)^{[p]} : L \longrightarrow L$ satisfying

$$(\lambda x)^{[p]} = \lambda^p x^{[p]}, x \in L, \lambda \in \mathbb{F};$$

Introduction to restricted Lie algebras The *p*-mappings

Positive characteristic - the *p*-mappings

The following definition is motivated by the previous example.

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map $(\cdot)^{[p]} : L \longrightarrow L$ satisfying $(\lambda x)^{[p]} = \lambda^p x^{[p]}, x \in L, \lambda \in \mathbb{F};$ $[x, y^{[p]}] = [[...[x, y], y], ..., y];$

Introduction to restricted Lie algebras The *p*-mappings

Positive characteristic - the *p*-mappings

The following definition is motivated by the previous example.

Definition (Jacobson)

A restricted Lie algebra is a Lie algebra L equipped with a map $(\cdot)^{[p]}: L \longrightarrow L$ satisfying $(\lambda x)^{[p]} = \lambda^p x^{[p]}, x \in L, \lambda \in \mathbb{F};$ **2** $[x, y^{[p]}] = [[...[x, y], y], ..., y];$ 3 $(x+y)^{[p]} = x^{[p]} + y^{[p]} + \sum_{i=1}^{p-1} s_i(x,y),$ with $i_{s_i}(x, y)$ the coefficient of Z^{i-1} in $ad_{Z_{x+y}}^{p-1}(x)$. Such a map $(-)^{[p]}: L \longrightarrow L$ is called p-map. \longrightarrow back イロト イボト イヨト イヨト

Introduction to restricted Lie algebras The *p*-mappings

Positive characteristic - the *p*-mappings

Remarks:

Severy associative algebra can be endowed with a restricted Lie algebra structure with the Frobenius map x → x^p.

Introduction to restricted Lie algebras The *p*-mappings

Positive characteristic - the *p*-mappings

Remarks:

- Every associative algebra can be endowed with a restricted Lie algebra structure with the Frobenius map x → x^p.
- If L is abelian, any p-semilinear map

$$\varphi(\lambda x + y) = \lambda^{p}\varphi(x) + \varphi(y), \ \lambda \in \mathbb{F}, \ x, y \in L$$

is a *p*-map.

Introduction to restricted Lie algebras The *p*-mappings

Positive characteristic - the *p*-mappings

Remarks:

- Every associative algebra can be endowed with a restricted Lie algebra structure with the Frobenius map x → x^p.
- If L is abelian, any p-semilinear map

$$\varphi(\lambda x + y) = \lambda^{p}\varphi(x) + \varphi(y), \ \lambda \in \mathbb{F}, \ x, y \in L$$

is a *p*-map.

③ Explicit expression for the sum of the s_i :

$$\sum_{i=1}^{p-1} s_i(x, y) = \sum_{\substack{x_i = x \text{ or } y \\ x_p = x, \ x_{p-1} = y}} \frac{1}{\sharp\{x\}} [x_1, [x_2, [..., [x_{p-1}, x_p]...],$$

Introduction to restricted Lie algebras The *p*-mappings

Positive characteristic - the *p*-mappings

Examples:

1. Let A be an associative algebra and

 $\mathsf{Der}(A) = \{D : A \to A \text{ linear, } D(ab) = D(a)b + aD(b) \ \forall a, b \in A\}.$

Then, Der(A) is a restricted Lie algebra with the commutator and the *p*-mapping $D \mapsto D^p$.

Introduction to restricted Lie algebras The *p*-mappings

Positive characteristic - the *p*-mappings

Examples:

2. Restricted $\mathfrak{sl}_2(\mathbb{F})$ (char $\mathbb{F} > 2$):

$$\mathfrak{sl}_2(\mathbb{F}) = \operatorname{span}_{\mathbb{F}} \{X, Y, H\},\$$

with brackets [X, Y] = H, [H, X] = 2X, [H, Y] = -2Y.

Introduction to restricted Lie algebras The *p*-mappings

Positive characteristic - the *p*-mappings

Examples:

2. Restricted $\mathfrak{sl}_2(\mathbb{F})$ (char $\mathbb{F} > 2$):

$$\mathfrak{sl}_2(\mathbb{F}) = \operatorname{span}_{\mathbb{F}} \left\{ X, Y, H \right\},$$

with brackets [X, Y] = H, [H, X] = 2X, [H, Y] = -2Y. Then,

$$X^{[p]} = Y^{[p]} = 0, \ H^{[p]} = 2^{p-1}H$$

is the **unique** *p*-structure on $\mathfrak{sl}_2(\mathbb{F})$.

Introduction to restricted Lie algebras The *p*-mappings

Positive characteristic - the *p*-mappings

Some properties:

• If ad is injective, then (2) \implies (1) and (3). (def)

Introduction to restricted Lie algebras The *p*-mappings

Positive characteristic - the *p*-mappings

Some properties:

- If ad is injective, then (2) \implies (1) and (3). (def)
- Suppose that $(\cdot)^{[p]_1}$ and $(\cdot)^{[p]_2}$ are *p*-maps on *L*. Then

$$x^{[p]_1}-x^{[p]_2}\in Z(L), \ \forall x\in L.$$

Consequence: if Z(L) = 0, there is at most one *p*-map on *L*.

Introduction to restricted Lie algebras The *p*-mappings

Positive characteristic - the *p*-mappings

Some properties:

- If ad is injective, then (2) \implies (1) and (3). (def)
- Suppose that $(\cdot)^{[p]_1}$ and $(\cdot)^{[p]_2}$ are *p*-maps on *L*. Then

$$x^{[p]_1}-x^{[p]_2}\in Z(L), \ \forall x\in L.$$

Consequence: if Z(L) = 0, there is at most one *p*-map on *L*.

Theorem (Jacobson's Theorem)

Let L be a n-dimensional Lie algebra over a field \mathbb{F} of characteristic p. Suppose that $(e_j)_{j \in \{1, \dots, n\}}$ is a basis of L such that it exists $y_j \in L$, $(ad_{e_j})^p = ad_{y_j}$. Then it exists exactly one p-map such that $e_j^{[p]} = y_j, \ \forall j = 1, \dots, n$.

Introduction to restricted Lie algebras The *p*-mappings

Positive characteristic - the *p*-mappings

Definition

Let $(L_1, [\cdot, \cdot]_1, (\cdot)^{[p]_1})$ and $(L_2, [\cdot, \cdot]_2, (\cdot)^{[p]_2})$ be restricted Lie algebras. A restricted morphism (or p-morphism) $\varphi : L_1 \longrightarrow L_2$ is a Lie morphism that satisfies $\varphi(x^{[p]_1}) = \varphi(x)^{[p]_2}$.

Restricted Heisenberg, p > 2Restricted Heisenberg, p = 2Generalized Heisenberg algebras

Restricted Heisenberg, p > 2.

Let \mathbb{F} be a field of characteristic p > 2.

 \rightsquigarrow **Goal:** find *p*-maps on the Heisenberg algebra \mathcal{H} .

Restricted Heisenberg, p > 2Restricted Heisenberg, p = 2Generalized Heisenberg algebras

Restricted Heisenberg, p > 2.

Let \mathbb{F} be a field of characteristic p > 2.

- \rightsquigarrow **Goal:** find *p*-maps on the Heisenberg algebra \mathcal{H} .
- \rightsquigarrow Facts: suppose that $(\cdot)^{[p]}$ is a p-map on $\mathcal H$
 - the Heisenberg algebra \mathcal{H} is nilpotent of order 2;

Restricted Heisenberg, p > 2Restricted Heisenberg, p = 2Generalized Heisenberg algebras

Restricted Heisenberg, p > 2.

Let \mathbb{F} be a field of characteristic p > 2.

 \rightsquigarrow **Goal:** find *p*-maps on the Heisenberg algebra \mathcal{H} .

- \rightsquigarrow Facts: suppose that $(\cdot)^{[p]}$ is a p-map on $\mathcal H$
 - the Heisenberg algebra \mathcal{H} is nilpotent of order 2;

•
$$\forall u, v \in \mathcal{H}, (u+v)^{[p]} = (u)^{[p]} + (v)^{[p]};$$

Restricted Heisenberg, $\rho > 2$ Restricted Heisenberg, $\rho = 2$ Generalized Heisenberg algebras

Restricted Heisenberg, p > 2.

Let \mathbb{F} be a field of characteristic p > 2.

 \rightsquigarrow **Goal:** find *p*-maps on the Heisenberg algebra \mathcal{H} .

- \rightsquigarrow Facts: suppose that $(\cdot)^{[p]}$ is a *p*-map on \mathcal{H}
 - the Heisenberg algebra \mathcal{H} is nilpotent of order 2;

•
$$\forall u, v \in \mathcal{H}, (u+v)^{[p]} = (u)^{[p]} + (v)^{[p]};$$

• $[u^{[p]}, v] = [u, [u, \cdots, [u, v] \cdots]] = 0.$

Restricted Heisenberg, p > 2Restricted Heisenberg, p = 2Generalized Heisenberg algebras

Restricted Heisenberg, p > 2.

Let \mathbb{F} be a field of characteristic p > 2.

 \rightsquigarrow **Goal:** find *p*-maps on the Heisenberg algebra \mathcal{H} .

- \rightsquigarrow Facts: suppose that $(\cdot)^{[p]}$ is a *p*-map on \mathcal{H}
 - the Heisenberg algebra \mathcal{H} is nilpotent of order 2;

•
$$\forall u, v \in \mathcal{H}$$
, $(u + v)^{[p]} = (u)^{[p]} + (v)^{[p]}$;

• $[u^{[p]}, v] = [u, [u, \cdots, [u, v] \cdots]] = 0.$

Consequence: the image of $(\cdot)^{[p]}$ lies in $Z(\mathcal{H}) = \operatorname{span}\{z\}$.

Restricted Heisenberg, p > 2Restricted Heisenberg, p = 2Generalized Heisenberg algebras

Restricted Heisenberg, p > 2.

Proposition

Any p-structure on ${\mathcal H}$ is given on the basis $\{x,y,z\}$ by

$$\begin{aligned} x^{[p]} &= \theta(x)z, \\ y^{[p]} &= \theta(y)z, \\ z^{[p]} &= \theta(z)z, \end{aligned}$$

with $\theta : \mathcal{H} \to \mathbb{F}$ a linear form on \mathcal{H} .

Restricted Heisenberg, p > 2Restricted Heisenberg, p = 2Generalized Heisenberg algebras

Restricted Heisenberg, p > 2.

Proposition

Any p-structure on ${\mathcal H}$ is given on the basis $\{x,y,z\}$ by

 $\begin{aligned} x^{[p]} &= \theta(x)z, \\ y^{[p]} &= \theta(y)z, \\ z^{[p]} &= \theta(z)z, \end{aligned}$

with $\theta : \mathcal{H} \to \mathbb{F}$ a linear form on \mathcal{H} .

Notation. We will denote a restricted Heisenberg algebra by (\mathcal{H}, θ) . **Remark.** Let $u \in (\mathcal{H}, \theta)$, $u = \alpha x + \beta y + \gamma z$, $\alpha, \beta, \gamma \in \mathbb{F}$. Then

$$u^{[p]} = (\alpha^{p}\theta(x) + \beta^{p}\theta(y) + \gamma^{p}\theta(z)) z.$$

Restricted Heisenberg, p > 2Restricted Heisenberg, p = 2Generalized Heisenberg algebras

Restricted Heisenberg, p > 2.

Lemma

Let (\mathcal{H}, θ) and (\mathcal{H}, θ') be two restricted Heisenberg algebras. Then, any Lie isomorphism $\phi : (\mathcal{H}, \theta) \to (\mathcal{H}, \theta')$ is of the form

$$\begin{cases} \phi(x) &= ax + by + cz \\ \phi(y) &= dx + ey + fz \\ \phi(z) &= (ae - bd)z, \quad ae - bd \neq 0, \end{cases}$$
(1)

with a, b, c, d, e, $f \in \mathbb{F}$. Moreover, ϕ is a restricted Lie isomorphism if and only if

$$\begin{cases} \theta(x)u &= a^{p}\theta'(x) + b^{p}\theta'(y) + c^{p}\theta'(z) \\ \theta(y)u &= d^{p}\theta'(x) + e^{p}\theta'(y) + f^{p}\theta'(z) \\ \theta(z)u &= u^{p}\theta'(z), \end{cases}$$
(2)

where $u := ae - bd \neq 0$.

Restricted Heisenberg, p > 2Restricted Heisenberg, p = 2Generalized Heisenberg algebras

Restricted Heisenberg, p > 2.

Theorem

There are three non-isomorphic restricted Heisenberg algebras, respectively given by the linear forms $\theta = 0$, $\theta = x^*$ and $\theta = z^*$.

Restricted Heisenberg, p > 2Restricted Heisenberg, p = 2Generalized Heisenberg algebras

Restricted Heisenberg, p > 2.

Theorem

There are three non-isomorphic restricted Heisenberg algebras, respectively given by the linear forms $\theta = 0$, $\theta = x^*$ and $\theta = z^*$.

Restricted Heisenberg, p > 2Restricted Heisenberg, p = 2Generalized Heisenberg algebras

Restricted Heisenberg, p > 2.

Theorem

There are three non-isomorphic restricted Heisenberg algebras, respectively given by the linear forms $\theta = 0$, $\theta = x^*$ and $\theta = z^*$.

•
$$x^*(x) = 1$$
, $x^*(y) = x^*(z) = 0$;

•
$$z^*(z) = 1$$
, $z^*(x) = z^*(y) = 0$;

- $(\mathcal{H}, 0)$ and (\mathcal{H}, x^*) are *p*-nilpotent.
- (\mathcal{H}, z^*) is not.

Restricted Heisenberg, p > 2Restricted Heisenberg, p = 2Generalized Heisenberg algebras

Restricted Heisenberg, p = 2.

Now, let ${\mathbb F}$ be a field of characteristic 2.

• in that case, \mathcal{H} is isomorphic to $\mathfrak{sl}_2(\mathbb{F})$.

we have

$$(x + y)^{[2]} = x^{[2]} + y^{[2]} + z;$$

$$(x + z)^{[2]} = x^{[2]} + z^{[2]};$$

$$(y + z)^{[2]} = y^{[2]} + z^{[2]}.$$

Restricted Heisenberg, p > 2Restricted Heisenberg, p = 2Generalized Heisenberg algebras

Restricted Heisenberg, p = 2.

Now, let ${\mathbb F}$ be a field of characteristic 2.

• in that case, \mathcal{H} is isomorphic to $\mathfrak{sl}_2(\mathbb{F})$.

we have

$$(x + y)^{[2]} = x^{[2]} + y^{[2]} + z;$$

$$(x + z)^{[2]} = x^{[2]} + z^{[2]};$$

$$(y + z)^{[2]} = y^{[2]} + z^{[2]}.$$

• Consequence:

$$(ax + by + cz)^{[2]} = a^2 x^{[2]} + b^2 y^{[2]} + c^2 z^{[2]} + abz, \ a, b, c \in \mathbb{F}.$$

Restricted Heisenberg, p > 2Restricted Heisenberg, p = 2Generalized Heisenberg algebras

Theorem

There are two non-isomorphic restricted Heisenberg algebras, respectively given by the linear forms $\theta = 0$ and $\theta = z^*$.

Restricted Heisenberg, p > 2Restricted Heisenberg, p = 2Generalized Heisenberg algebras

Generalized Heisenberg algebras

We recall the generalized Heisenberg algebra of dimension 2n + 1:

$$\mathcal{H}_{2n+1} = \mathsf{Span}\{x_1, \cdots, x_n, y_1, \cdots, y_n, z\},\$$

with bracket given by

$$[x_i, x_j] = 0, \ [x_i, y_j] = 0 \ (i \neq j), \ [x_i, y_i] = z, \ [x_i, z] = [y_i, z] = 0.$$

Restricted Heisenberg, p > 2Restricted Heisenberg, p = 2Generalized Heisenberg algebras

Generalized Heisenberg algebras

We recall the generalized Heisenberg algebra of dimension 2n + 1:

$$\mathcal{H}_{2n+1} = \mathsf{Span}\{x_1, \cdots, x_n, y_1, \cdots, y_n, z\},\$$

with bracket given by

$$[x_i, x_j] = 0, \ [x_i, y_j] = 0 \ (i \neq j), \ [x_i, y_i] = z, \ [x_i, z] = [y_i, z] = 0.$$

Proposition

Any p-map on \mathcal{H}_{2n+1} is given by

$$x_i^{[p]} = \theta(x_i)z, \ y_i^{[p]} = \theta(y_i)z, \ z^{[p]} = \theta(z)z,$$

with $\theta : \mathcal{H}_{2n+1} \to \mathbb{F}$ be a linear form.

Restricted Heisenberg, p > 2Restricted Heisenberg, p = 2Generalized Heisenberg algebras

Generalized Heisenberg algebras

We have the following results:

 $(\mathcal{H},0) \ncong (\mathcal{H},x_i^*), \ (\mathcal{H},0) \ncong (\mathcal{H},y_i^*), \ (\mathcal{H},0) \ncong (\mathcal{H},z^*);$

 $(\mathcal{H}, z^*) \ncong (\mathcal{H}, x_i^*), \ (\mathcal{H}, z^*) \ncong (\mathcal{H}, y_i^*).$

Restricted Heisenberg, p > 2Restricted Heisenberg, p = 2Generalized Heisenberg algebras

3

Last Slide of the Day

Thank you for your attention!

Main reference: Q. Ehret & A. Makhlouf, *Deformations and Cohomology of restricted Lie-Rinehart algebras in positive characteristic.* (the preprint will be on arXiv asap)

Restricted Heisenberg, p > 2Restricted Heisenberg, p = 2Generalized Heisenberg algebras

3

Last Slide of the Day

Thank you for your attention!

Main reference: Q. Ehret & A. Makhlouf, *Deformations and Cohomology of restricted Lie-Rinehart algebras in positive characteristic.* (the preprint will be on arXiv asap)

Question: événement à Mulhouse en juin??