Midterm Exam

- 1. Decompose 1 + 3i in $\mathbb{Z}[i]$.
- 2. Let $\alpha = \frac{1}{2}(2 + \sqrt{5})$. Check whether α is an algebraic number or not.
- 3. Let R be a ring and let J and K be two ideals of R such that $J \subset K$.
 - (a) Show that K/J is an ideal of R/J.
 - (b) Show the third isomorphism theorem :

$$\frac{R/J}{K/J} \cong R/K.$$

- (c) Use question 3(b) to show that $\mathbb{Z}[x]/(x-1,3) \cong \mathbb{F}_3$.
- 4. In the ring $\mathbb{Z}/6\mathbb{Z}$, show that a = 2 is prime and reducible. Explain why in this ring, a prime element can be reducible.
- 5. Let $P(x) = 12x^3 + 18x^2 + 6x \in \mathbb{Z}[x]$. Decompose P into prime elements in $\mathbb{Z}[x]$.
- 6. Let A be the ideal of $\mathbb{Z}[\sqrt{-5}]$ generated by $(3, 1+\delta)$, with $\delta = \sqrt{-5}$. Show that $A^2 = (2-\delta)$.
- 7. Let L be the lattice in the plane generated by the vectors $u = (1, 2)^t$ and $v = (2, 1)^t$. Let $\Delta(L)$ be the area of the parallelogram spanned by u and v. Find a vector $w \in L$ such that $|w|^2 \leq \frac{2}{\sqrt{3}} \Delta(L)$.