Midterm Exam

1. Decompose $1+3 i$ in $\mathbb{Z}[i]$.
2. Let $\alpha=\frac{1}{2}(2+\sqrt{5})$. Check whether α is an algebraic number or not.
3. Let R be a ring and let J and K be two ideals of R such that $J \subset K$.
(a) Show that K / J is an ideal of R / J.
(b) Show the third isomorphism theorem:

$$
\frac{R / J}{K / J} \cong R / K
$$

(c) Use question $3(\mathrm{~b})$ to show that $\mathbb{Z}[x] /(x-1,3) \cong \mathbb{F}_{3}$.
4. In the $\operatorname{ring} \mathbb{Z} / 6 \mathbb{Z}$, show that $a=2$ is prime and reducible. Explain why in this ring, a prime element can be reducible.
5. Let $P(x)=12 x^{3}+18 x^{2}+6 x \in \mathbb{Z}[x]$. Decompose P into prime elements in $\mathbb{Z}[x]$.
6. Let A be the ideal of $\mathbb{Z}[\sqrt{-5}]$ generated by $(3,1+\delta)$, with $\delta=\sqrt{-5}$. Show that $A^{2}=(2-\delta)$.
7. Let L be the lattice in the plane generated by the vectors $u=(1,2)^{t}$ and $v=(2,1)^{t}$. Let $\Delta(L)$ be the area of the parallelogram spanned by u and v. Find a vector $w \in L$ such that $|w|^{2} \leq \frac{2}{\sqrt{3}} \Delta(L)$.

