Problems Galois Theory

Adapted from https://irma.math.unistra.fr/~guillot/.
Warm-up exercise. Let K be the splitting field of $x^{3}-2$ over \mathbb{Q}. Show that $\operatorname{Gal}(K / \mathbb{Q}) \cong S_{3}$.

1 Problem 1

1. Let K / F be a finite extension. Show that $|\operatorname{Gal}(K / F)|$ divides $[K: F]$.
2. Let K be a field of cardinality 49.
(a) Explain why there exists $A \in K$ such that $K=\left\{0,1, A, A^{2}, \cdots, A^{48}\right\}$.
(b) Show that $K=\left\{x+y A, x, y \in \mathbb{F}_{7}\right\}$.
(c) How many elements $B \in K$ satisfy the same property than $A\left(i e, K=\left\{0,1, B, B^{2}, \cdots, B^{48}\right\}\right)$? Are they of the form $\sigma(A)$ for $\sigma \in \operatorname{Gal}\left(K / \mathbb{F}_{7}\right)$?
3. Consider the following matrix with coefficients in \mathbb{F}_{7} :

$$
A=\left(\begin{array}{ll}
0 & 2 \\
1 & 2
\end{array}\right) .
$$

(a) Compute A^{2} and show that $A^{2}=2 I+2 A$.
(b) Compute A^{4} and A^{8}. Show that $A^{48}=I$ and $A^{k} \neq I, \forall 1 \leq k \leq 48$.
(c) Show that $\left\{0,1, A, A^{2}, \cdots, A^{48}\right\}=\left\{x I+y A, x, y \in \mathbb{F}_{7}\right\}$.
(d) Denote K the set described in two different ways previous question. Show that K is a field of cardinality 49.
4. (Harder) Let p prime and let K be a field of cardinality p^{2}. Show that K can be seen as a subring of $M_{2}\left(\mathbb{F}_{p}\right)$.

2 Problem 2

1. Let $p>2$ prime and let $\omega=e^{\frac{2 i \pi}{p}}$. Let $L=\mathbb{Q}(\omega)$ and $F=L \cap \mathbb{R}$.
(a) Show that L / \mathbb{Q} is Galois and describe the Galois group.
(b) Using the polynomial $(X-\omega)\left(X-\omega^{-1}\right)$, show that $[L: F]=2$.
(c) Show that F / \mathbb{Q} is Galois.
2. Let $a \in \mathbb{Q}_{>0}$ such that a does not admit any $p^{\text {th }}$-root in \mathbb{Q}, and let $\alpha=\sqrt[p]{a} \in \mathbb{R}$. Let $K=F(\alpha)$ and $N=L(\alpha)=\mathbb{Q}(\alpha, \omega)$. Draw a diagram describing the situation.
3. (a) Let f be the minimal polynomial of α over \mathbb{Q}. Show that f admits exactly one real root, and at least one non-real root.
(b) Deduce that $\alpha \notin L$ (use 1(c)).
(c) An extension is called cyclic if the corresponding Galois group is cyclic. Show that N / L is a cyclic extension and that $[N: L]=p$.
(d) Deduce that $f=X^{p}-a$ and that $[\mathbb{Q}(\alpha): \mathbb{Q}]=p$.
(e) Show that $[N: K] \leq 2$ and $[K: F] \leq p$, then show that those are actually equalities.
4. We will describe $G=\operatorname{Gal}(N / F)$.
(a) Show that N / F is Galois.
(b) Show that there exists $\sigma \in G$ such that $\sigma(\alpha)=\alpha \omega$ and $\sigma(\omega)=\omega$.
(c) Show that there exists $\tau \in G$ such that $\tau(\alpha)=\alpha$ and $\tau(\omega)=\omega^{-1}$.
(d) Deduce the full description of G.

3 Problem 3

Let k be a field and $K=k(X)$ the field of fractions with coefficients in k. Let $\sigma \in \operatorname{Gal}(K / k)$ such that $\sigma(X)=1 / X$ and let $\tau \in \operatorname{Gal}(K / k)$ such that $\tau(X)=1-X$.

1. (a) Show that $\sigma^{2}=I$, that $\tau^{2}=I$ and that $\tau \sigma \tau=\sigma \tau \sigma$. Deduce $(\sigma \tau)^{3}=I$.
(b) Let $\rho=\sigma \tau$. Show that $\rho^{3}=I$ and that $\sigma \rho=\rho^{2} \sigma$.
2. Let G the group generated by σ and τ. Deduce that G contains exactly 6 elements, that is, $I, \sigma, \tau, \sigma \tau, \tau \sigma, \tau \sigma \tau$. Deduce that $G \cong S_{3}$.
3. (long and boring) For every $g \in G$, compute $g(1+X)$. Show that

$$
u:=\prod_{g \in G} g(1+X)=-\frac{(X-2)^{2}(2 X-1)^{2}(X+1)^{2}}{(X-1)^{2} X^{2}} .
$$

4. Let \mathfrak{g} be the smallest field containing G. Show that $\mathfrak{g}=k(u)$.

4 Problem 4

Let p be a prime number and $q=p^{s}$, let \mathbb{F}_{q} be a field of cardinality q and let $\overline{\mathbb{F}_{q}}$ be the algebraic closure of \mathbb{F}_{q}.

1. Show that there exists a field K satisfying $\mathbb{F}_{q} \subset K \subset \overline{\mathbb{F}_{q}}$ and $\left[K: \mathbb{F}_{q}\right] \leq 2$ such that every equation of the form $a X^{2}+b X+c=0, a, b, c \in \mathbb{F}_{q}$, admits a solution in K.
2. (a) Suppose $p>2$. Show that there exists an element in \mathbb{F}_{q} which doesn't admit any square root in \mathbb{F}_{q}.
(b) Suppose $p=2$. Show that there exists an element in \mathbb{F}_{q} which is not of the form $X^{2}+X$.
(c) Deduce that there always exists an explicit irreducible polynomial of $\mathbb{F}_{q}[X]$ of degree 2 .
3. Show that, for all $n \geq 1$, there exists an irreducible polynomial of degree n of $\mathbb{F}_{q}[X]$ (it is not advised to use the previous question).

5 Problem 5

In this problem, we will compute the Galois group of $\mathbb{Q}(\sqrt{5}, \sqrt{11}, \sqrt{4+\sqrt{5}}) / \mathbb{Q}$.

1. Let $K=\mathbb{Q}(\sqrt{5}, \sqrt{11})$. Show that K / \mathbb{Q} is Galois and that there exists $\sigma, \tau \in \operatorname{Gal}(K / \mathbb{Q})$ such that

$$
\sigma(\sqrt{5})=-\sqrt{5} ; \quad \sigma(\sqrt{11})=\sqrt{11} ; \quad \tau(\sqrt{5})=\sqrt{5} ; \quad \tau(\sqrt{11})=-\sqrt{11} .
$$

2. Let $\alpha=4+\sqrt{5} \in K$. Compute $\alpha \sigma(\alpha)$, then show that for all $g \in \operatorname{Gal}(K / \mathbb{Q})$, it is possible to find $x \in K$ such that $g(\alpha)=\alpha x^{2}$.
3. Let $L=K(\sqrt{\alpha})$. Let $\phi: L \rightarrow \overline{\mathbb{Q}}$ be an homomorphism, where $\overline{\mathbb{Q}}$ is the algebraic closure of \mathbb{Q}. Show that $\phi(K)=K$ and $\phi(L)=L$. Deduce that L / \mathbb{Q} is Galois.
4. We denote by $\tilde{\sigma}(\operatorname{resp} . \tilde{\tau})$ the element of $\operatorname{Gal}(L / \mathbb{Q})$ such that $\left.\tilde{\sigma}\right|_{K}=\sigma\left(\right.$ resp. $\left.\left.\tilde{\tau}\right|_{K}=\tau\right)$. Show that $\tilde{\sigma}^{2}=\tilde{\tau}^{2}=I$ and that $\tilde{\sigma} \tilde{\tau} \tilde{\sigma} \tilde{\tau}$ is not the identity.
5. Show that $\operatorname{Gal}(L / \mathbb{Q})$ is a non-abelian group of order 8 .
6. Deduce the full description of $\operatorname{Gal}(L / \mathbb{Q})$.

6 Problem 6

1. Let p_{1}, \cdots, p_{s} be distinct odd primes and $k_{1}, \cdots k_{s}$ integers ≥ 0. Show that there exists a Galois extension K / \mathbb{Q} such that

$$
\operatorname{Gal}(K / \mathbb{Q}) \cong \prod_{i=1}^{s} \mathbb{Z} / p_{i}^{k_{i}}\left(p_{i}-1\right) \mathbb{Z}
$$

Adapt the previous formula in the case where there exists i such that $p_{i}=2$.
2. Let $n \in \mathbb{Z}$. Show that there exists a Galois extension L / \mathbb{Q} such that $\operatorname{Gal}(L / \mathbb{Q})$ is cyclic of order n.
3. Let s be an integer ≥ 1. Show that here exists a Galois extension L / \mathbb{Q} such that

$$
\operatorname{Gal}(L / \mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{s}
$$

4. In this last question, we will use the following result, known as Dirichlet Theorem :

Theorem 1. For all $n \in \mathbb{Z}$ there exists infinitely many primes of the form $1+d n$, with $d \in \mathbb{Z}$.
Show that for all finite abelian group A, there exists a Galois extension L / \mathbb{Q} such that $\operatorname{Gal}(L / \mathbb{Q}) \cong A$.

