Spring 2024

Problems Galois Theory

Adapted from https://irma.math.unistra.fr/~guillot/.

Warm-up exercise. Let K be the splitting field of $x^3 - 2$ over \mathbb{Q} . Show that $\operatorname{Gal}(K/\mathbb{Q}) \cong S_3$.

1 Problem 1

- 1. Let K/F be a finite extension. Show that $|\operatorname{Gal}(K/F)|$ divides [K:F].
- 2. Let K be a field of cardinality 49.
 - (a) Explain why there exists $A \in K$ such that $K = \{0, 1, A, A^2, \dots, A^{48}\}$.
 - (b) Show that $K = \{x + yA, x, y \in \mathbb{F}_7\}.$
 - (c) How many elements $B \in K$ satisfy the same property than A (*ie*, $K = \{0, 1, B, B^2, \dots, B^{48}\}$)? Are they of the form $\sigma(A)$ for $\sigma \in \text{Gal}(K/\mathbb{F}_7)$?
- 3. Consider the following matrix with coefficients in \mathbb{F}_7 :

$$A = \begin{pmatrix} 0 & 2\\ 1 & 2 \end{pmatrix}$$

- (a) Compute A^2 and show that $A^2 = 2I + 2A$.
- (b) Compute A^4 and A^8 . Show that $A^{48} = I$ and $A^k \neq I$, $\forall 1 \leq k \leq 48$.
- (c) Show that $\{0, 1, A, A^2, \cdots, A^{48}\} = \{xI + yA, x, y \in \mathbb{F}_7\}.$
- (d) Denote K the set described in two different ways previous question. Show that K is a field of cardinality 49.
- 4. (Harder) Let p prime and let K be a field of cardinality p^2 . Show that K can be seen as a subring of $M_2(\mathbb{F}_p)$.

2 Problem 2

- 1. Let p > 2 prime and let $\omega = e^{\frac{2i\pi}{p}}$. Let $L = \mathbb{Q}(\omega)$ and $F = L \cap \mathbb{R}$.
 - (a) Show that L/\mathbb{Q} is Galois and describe the Galois group.
 - (b) Using the polynomial $(X \omega)(X \omega^{-1})$, show that [L:F] = 2.
 - (c) Show that F/\mathbb{Q} is Galois.
- 2. Let $a \in \mathbb{Q}_{>0}$ such that a does not admit any p^{th} -root in \mathbb{Q} , and let $\alpha = \sqrt[p]{a} \in \mathbb{R}$. Let $K = F(\alpha)$ and $N = L(\alpha) = \mathbb{Q}(\alpha, \omega)$. Draw a diagram describing the situation.
- 3. (a) Let f be the minimal polynomial of α over \mathbb{Q} . Show that f admits exactly one real root, and at least one non-real root.
 - (b) Deduce that $\alpha \notin L$ (use 1(c)).
 - (c) An extension is called *cyclic* if the corresponding Galois group is cyclic. Show that N/L is a cyclic extension and that [N : L] = p.
 - (d) Deduce that $f = X^p a$ and that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = p$.
 - (e) Show that $[N:K] \leq 2$ and $[K:F] \leq p$, then show that those are actually equalities.
- 4. We will describe $G = \operatorname{Gal}(N/F)$.
 - (a) Show that N/F is Galois.
 - (b) Show that there exists $\sigma \in G$ such that $\sigma(\alpha) = \alpha \omega$ and $\sigma(\omega) = \omega$.
 - (c) Show that there exists $\tau \in G$ such that $\tau(\alpha) = \alpha$ and $\tau(\omega) = \omega^{-1}$.
 - (d) Deduce the full description of G.

3 Problem 3

Let k be a field and K = k(X) the field of fractions with coefficients in k. Let $\sigma \in \text{Gal}(K/k)$ such that $\sigma(X) = 1/X$ and let $\tau \in \text{Gal}(K/k)$ such that $\tau(X) = 1 - X$.

- 1. (a) Show that $\sigma^2 = I$, that $\tau^2 = I$ and that $\tau \sigma \tau = \sigma \tau \sigma$. Deduce $(\sigma \tau)^3 = I$.
 - (b) Let $\rho = \sigma \tau$. Show that $\rho^3 = I$ and that $\sigma \rho = \rho^2 \sigma$.
- 2. Let G the group generated by σ and τ . Deduce that G contains exactly 6 elements, that is, $I, \sigma, \tau, \sigma \tau, \tau \sigma, \tau \sigma \tau$. Deduce that $G \cong S_3$.
- 3. (long and boring) For every $g \in G$, compute g(1 + X). Show that

$$u := \prod_{g \in G} g(1+X) = -\frac{(X-2)^2 (2X-1)^2 (X+1)^2}{(X-1)^2 X^2}.$$

4. Let \mathfrak{g} be the smallest field containing G. Show that $\mathfrak{g} = k(u)$.

4 Problem 4

Let p be a prime number and $q = p^s$, let \mathbb{F}_q be a field of cardinality q and let $\overline{\mathbb{F}_q}$ be the algebraic closure of \mathbb{F}_q .

- 1. Show that there exists a field K satisfying $\mathbb{F}_q \subset K \subset \overline{\mathbb{F}_q}$ and $[K : \mathbb{F}_q] \leq 2$ such that every equation of the form $aX^2 + bX + c = 0$, $a, b, c \in \mathbb{F}_q$, admits a solution in K.
- 2. (a) Suppose p > 2. Show that there exists an element in \mathbb{F}_q which doesn't admit any square root in \mathbb{F}_q .
 - (b) Suppose p = 2. Show that there exists an element in \mathbb{F}_q which is not of the form $X^2 + X$.
 - (c) Deduce that there always exists an explicit irreducible polynomial of $\mathbb{F}_q[X]$ of degree 2.
- 3. Show that, for all $n \ge 1$, there exists an irreducible polynomial of degree n of $\mathbb{F}_q[X]$ (it is not advised to use the previous question).

5 Problem 5

In this problem, we will compute the Galois group of $\mathbb{Q}\left(\sqrt{5},\sqrt{11},\sqrt{4+\sqrt{5}}\right)/\mathbb{Q}$.

1. Let $K = \mathbb{Q}(\sqrt{5}, \sqrt{11})$. Show that K/\mathbb{Q} is Galois and that there exists $\sigma, \tau \in \operatorname{Gal}(K/\mathbb{Q})$ such that

$$\sigma(\sqrt{5}) = -\sqrt{5}; \ \sigma(\sqrt{11}) = \sqrt{11}; \ \tau(\sqrt{5}) = \sqrt{5}; \ \tau(\sqrt{11}) = -\sqrt{11}.$$

- 2. Let $\alpha = 4 + \sqrt{5} \in K$. Compute $\alpha \sigma(\alpha)$, then show that for all $g \in \text{Gal}(K/\mathbb{Q})$, it is possible to find $x \in K$ such that $g(\alpha) = \alpha x^2$.
- 3. Let $L = K(\sqrt{\alpha})$. Let $\phi : L \to \overline{\mathbb{Q}}$ be an homomorphism, where $\overline{\mathbb{Q}}$ is the algebraic closure of \mathbb{Q} . Show that $\phi(K) = K$ and $\phi(L) = L$. Deduce that L/\mathbb{Q} is Galois.
- 4. We denote by $\tilde{\sigma}$ (resp. $\tilde{\tau}$) the element of $\operatorname{Gal}(L/\mathbb{Q})$ such that $\tilde{\sigma}|_{K} = \sigma$ (resp. $\tilde{\tau}|_{K} = \tau$). Show that $\tilde{\sigma}^{2} = \tilde{\tau}^{2} = I$ and that $\tilde{\sigma}\tilde{\tau}\tilde{\sigma}\tilde{\tau}$ is not the identity.
- 5. Show that $\operatorname{Gal}(L/\mathbb{Q})$ is a non-abelian group of order 8.
- 6. Deduce the full description of $\operatorname{Gal}(L/\mathbb{Q})$.

6 Problem 6

1. Let p_1, \dots, p_s be distinct odd primes and k_1, \dots, k_s integers ≥ 0 . Show that there exists a Galois extension K/\mathbb{Q} such that

$$\operatorname{Gal}(K/\mathbb{Q}) \cong \prod_{i=1}^{s} \mathbb{Z}/p_i^{k_i}(p_i-1)\mathbb{Z}.$$

Adapt the previous formula in the case where there exists i such that $p_i = 2$.

- 2. Let $n \in \mathbb{Z}$. Show that there exists a Galois extension L/\mathbb{Q} such that $\operatorname{Gal}(L/\mathbb{Q})$ is cyclic of order n.
- 3. Let s be an integer ≥ 1 . Show that here exists a Galois extension L/\mathbb{Q} such that

$$\operatorname{Gal}(L/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^s.$$

4. In this last question, we will use the following result, known as Dirichlet Theorem :

Theorem 1. For all $n \in \mathbb{Z}$ there exists infinitely many primes of the form 1 + dn, with $d \in \mathbb{Z}$.

Show that for all finite abelian group A, there exists a Galois extension L/\mathbb{Q} such that $\operatorname{Gal}(L/\mathbb{Q}) \cong A$.