Problems 1

1 Exercises from Artin

p. 354 : ex 1.3 ;
p. 355 : ex 3.8, 3.9, 3.11, 4.3, 4.4 .

2 Rings and homomorphisms

1. Let R be a ring. The characteristic if R is the generator of the kernel of the map $\mathbb{Z} \rightarrow R$ (which is a principal ideal). Determine all rings of cardinality p and characteristic p.
2. Let R be a commutative ring. Let $\operatorname{Nil}(R)=\left\{r \in R, \exists n \geq 1, r^{n}=0\right\}$.
(a) Prove that $\operatorname{Nil}(R)$ is an ideal of R.
(b) Let $r \in \operatorname{Nil}(R)$, show that $1-r$ is invertible in R.
(c) In the case where R is not commutative, show that $\operatorname{Nil}(R)$ is not necessarely an ideal.

3 Quotient rings

1. Show that $\mathbb{Z}[i] /(1+i) \cong \mathbb{Z} / 2 \mathbb{Z}$.
2. Show that $\mathbb{Z}[x] /(n, x) \cong \mathbb{Z} / n \mathbb{Z}, n \geq 2$.
3. Show that $\mathbb{Z}[x] /(n) \cong \mathbb{Z} / n \mathbb{Z}[x], n \geq 2$.

4 Polynomials

1. Let \mathbb{K} be a field. Show that a polynomial of degree 2 or 3 in $\mathbb{K}[x]$ is irreducible if and only if it doesn't admit any root in \mathbb{K}.
2. Find all irreducible polynomials of degree 2 and 3 with $\mathbb{K}=\mathbb{Z} / 2 \mathbb{Z}$.
3. Show that the polynomials $5 x^{3}+8 x^{2}+3 x+15$ and $x^{5}+2 x^{3}-6 x-5$ are irreducible in \mathbb{Z}.
4. Describe all polynomials of degree 4 and 5 on $\mathbb{Z} / 2 \mathbb{Z}$.
5. Let $P \in \mathbb{Z}[x]$. Suppose that $P(0)$ and $P(1)$ are odd. Show that P doesn't have any root in \mathbb{Z}.
6. More generally, suppose that n doesn't divide any of the numbers $P(0), P(1), \cdots P(n-1)$. how that P doesn't have any root in \mathbb{Z}.
