Problems 1

1 Exercises from Artin

p. 354 : ex 1.3;
p. 355 : ex 3.8, 3.9, 3.11, 4.3, 4.4.

2 Rings and homomorphisms

- 1. Let R be a ring. The characteristic if R is the generator of the kernel of the map $\mathbb{Z} \to R$ (which is a principal ideal). Determine all rings of cardinality p and characteristic p.
- 2. Let R be a commutative ring. Let $Nil(R) = \{r \in R, \exists n \ge 1, r^n = 0\}.$
 - (a) Prove that Nil(R) is an ideal of R.
 - (b) Let $r \in Nil(R)$, show that 1 r is invertible in R.
 - (c) In the case where R is not commutative, show that Nil(R) is not necessarely an ideal.

3 Quotient rings

- 1. Show that $\mathbb{Z}[i]/(1+i) \cong \mathbb{Z}/2\mathbb{Z}$.
- 2. Show that $\mathbb{Z}[x]/(n,x) \cong \mathbb{Z}/n\mathbb{Z}, n \ge 2$.
- 3. Show that $\mathbb{Z}[x]/(n) \cong \mathbb{Z}/n \mathbb{Z}[x], n \ge 2$.

4 Polynomials

- 1. Let \mathbb{K} be a field. Show that a polynomial of degree 2 or 3 in $\mathbb{K}[x]$ is irreducible if and only if it doesn't admit any root in \mathbb{K} .
- 2. Find all irreducible polynomials of degree 2 and 3 with $\mathbb{K} = \mathbb{Z}/2\mathbb{Z}$.
- 3. Show that the polynomials $5x^3 + 8x^2 + 3x + 15$ and $x^5 + 2x^3 6x 5$ are irreducible in \mathbb{Z} .
- 4. Describe all polynomials of degree 4 and 5 on $\mathbb{Z}/2\mathbb{Z}$.
- 5. Let $P \in \mathbb{Z}[x]$. Suppose that P(0) and P(1) are odd. Show that P doesn't have any root in Z.
- 6. More generally, suppose that n doesn't divide any of the numbers $P(0), P(1), \dots P(n-1)$. how that P doesn't have any root in \mathbb{Z} .