Problems 2

1 Exercise from Homework 2

Show that the ring obtained from $\mathbb{Z} / 12 \mathbb{Z}$ by adjoining an inverse of 2 is isomorphic to \mathbb{F}_{3}.

2 More polynomials

1. Suppose that $P(x)$ is irreducible over a field \mathbb{F} and let $a \in \mathbb{F}$. Show that $P(x+a)$ is irreducible as well.
2. Let $a \in \mathbb{F}_{p}$. Show that $x^{p}+a$ is reducible on $\mathbb{F}_{p}[x]$.
3. Let $f, g \in \mathbb{Q}[x]$, with f irreducible. Suppose that it exists α such that $f(\alpha)=g(\alpha)=0$. Show that f divides g.
4. Show that the following polynomials are irreducible in $\mathbb{Q}[x]$:
(a) $x^{4}-8 x^{3}+12 x^{2}-6 x+2$;
(b) $x^{5}-12 x^{3}+36 x-12$;
(c) $x^{4}-x^{3}+2 x+1$;
5. Let $\left(x^{3}-x+2\right)$ the principal ideal generated by $\left(x^{3}-x+2\right)$ in $\mathbb{Q}[x]$.
(a) Show that the quotient ring $R=\mathbb{Q}[x] /\left(x^{3}-x+2\right)$ is a field.
(b) Let y be the image of x in R. Compute y^{-1}.

3 Gauss Integers

Our goal is to show that a prime $p \in \mathbb{Z}$ is a sum of two squares if and only if $p=2$ or $p \equiv 1[4]$.

1. We denote $S=\left\{p \in \mathbb{Z}\right.$ prime, $\left.\exists a, b \in \mathbb{Z}, p=a^{2}+b^{2}\right\}$. Show that $p \in S \Longleftrightarrow p$ is reducible in $\mathbb{Z}[i]$.
2. Show that $\mathbb{Z}[i] /(p)$ is an integral domain if and only if -1 is a square in \mathbb{F}_{p}.
3. Deduce the result in the case where $p=2$.
4. Case $p>2$. Show that $x \in \mathbb{F}_{p}$ is a square if and only if $x^{\frac{p-1}{2}}=1$. Deduce the result.
