Problems 3

1 Prime ideals

Let R be a ring and $P \subset R$ an ideal. The ideal P is called prime if $a b \in P \Rightarrow a \in P$ or $b \in P$.

1. Let R be a ring and let $a \in R$. Show that the ideal (a) is prime if and only if a is a prime element of R.
2. Let R be a ring and $P \subset R$ a proper ideal. Show that the following conditions are equivalent.
(a) P is a prime ideal;
(b) R / P is an integral domain;
(c) Let A, B ideals such that $A B \subset P$. Then $A \subset P$ or $B \subset P$.
3. Let R be a finite integral domain. Show that R is a field.

2 Algebraic numbers

Which of the following complex numbers are algebraic? Which are algebraic integers?

1. $355 / 113$;
2. $e^{2 \pi i / 23}$;
3. $e^{\pi i / 23}$;
4. $\sqrt{17}+\sqrt{19}$;
5. $\frac{1+\sqrt{17}}{2 \sqrt{-19}}$;
6. $\sqrt{1+\sqrt{2}}+\sqrt{1-\sqrt{2}}$.

3 Exercise on Gaussian integers from last recitation

Our goal is to show that a prime $p \in \mathbb{Z}$ is a sum of two squares if and only if $p=2$ or $p \equiv 1[4]$.

1. We denote $S=\left\{p \in \mathbb{Z}\right.$ prime, $\left.\exists a, b \in \mathbb{Z}, p=a^{2}+b^{2}\right\}$. Show that $p \in S \Longleftrightarrow p$ is reducible in $\mathbb{Z}[i]$.
2. Show that $\mathbb{Z}[i] /(p)$ is an integral domain if and only if -1 is not a square in \mathbb{F}_{p}.
3. Deduce the result in the case where $p=2$.
4. Case $p>2$. Show that $x \in \mathbb{F}_{p}$ is a square if and only if $x^{\frac{p-1}{2}}=1$. Deduce the result.
