Problems 3

1 Prime ideals

Let R be a ring and $P \subset R$ an ideal. The ideal P is called *prime* if $ab \in P \Rightarrow a \in P$ or $b \in P$.

- 1. Let R be a ring and let $a \in R$. Show that the ideal (a) is prime if and only if a is a prime element of R.
- 2. Let R be a ring and $P \subset R$ a proper ideal. Show that the following conditions are equivalent.
 - (a) P is a prime ideal;
 - (b) R/P is an integral domain;
 - (c) Let A, B ideals such that $AB \subset P$. Then $A \subset P$ or $B \subset P$.
- 3. Let R be a finite integral domain. Show that R is a field.

2 Algebraic numbers

Which of the following complex numbers are algebraic? Which are algebraic integers?

- 1. 355/113;
- 2. $e^{2\pi i/23}$;
- 3. $e^{\pi i/23}$;
- 4. $\sqrt{17} + \sqrt{19};$

5.
$$\frac{1+\sqrt{17}}{\sqrt{17}}$$

5. $\overline{2\sqrt{-19}}$;

6.
$$\sqrt{1+\sqrt{2}}+\sqrt{1-\sqrt{2}}$$
.

3 Exercise on Gaussian integers from last recitation

Our goal is to show that a prime $p \in \mathbb{Z}$ is a sum of two squares if and only if p = 2 or $p \equiv 1[4]$.

- 1. We denote $S = \{p \in \mathbb{Z} \text{ prime}, \exists a, b \in \mathbb{Z}, p = a^2 + b^2\}$. Show that $p \in S \iff p$ is reducible in $\mathbb{Z}[i]$.
- 2. Show that $\mathbb{Z}[i]/(p)$ is an integral domain if and only if -1 is not a square in \mathbb{F}_p .
- 3. Deduce the result in the case where p = 2.
- 4. Case p > 2. Show that $x \in \mathbb{F}_p$ is a square if and only if $x^{\frac{p-1}{2}} = 1$. Deduce the result.