Problems 5

1. Let $\delta=\sqrt{-5}, R=\mathbb{Q}[\delta]$ and let $B=(3,1+\delta)$. Find a generator for the principal ideal B^{2}.
2. Let $R=\mathbb{Q}[\delta]$, with $\delta=\sqrt{-21}$. We denote by G the class group.
(a) Explain why we only have to consider the primes $2,3,5$ to compute G.
(b) Show that 2 ramifies. Deduce a first relation within G.
(c) Show that 3 and 5 split.
(d) By computing the norm of some well-chosen elements, find two extra relations within G.
(e) Conclude that G is isomorphic to the Klein group $C_{2} \times C_{2}$.

The Klein group can be interpreted as the group of symmetries of a "regular" cross (see below). It is the smallest non-cyclic group.

3. Let $\delta=\sqrt{-3}$ and $R=\mathbb{Z}[\delta]$. Note that since $-3=1[4], R$ is not the ring of integers of $\mathbb{Q}[\delta]$. Let $A=(2,1+\delta)$.
(a) Prove that R / A is a field and that A is maximal.
(b) Prove that $\bar{A} A$ is not principal and that the Main Lemma is not valid.
(c) Prove that A contains the ideal (2), but that A doesn't divide (2). Compare with Corollary 13.4.9 of Artin. Comments?

