Problems 5

- 1. Let $\delta = \sqrt{-5}$, $R = \mathbb{Q}[\delta]$ and let $B = (3, 1 + \delta)$. Find a generator for the principal ideal B^2 .
- 2. Let $R = \mathbb{Q}[\delta]$, with $\delta = \sqrt{-21}$. We denote by G the class group.
 - (a) Explain why we only have to consider the primes 2, 3, 5 to compute G.
 - (b) Show that 2 ramifies. Deduce a first relation within G.
 - (c) Show that 3 and 5 split.
 - (d) By computing the norm of some well-chosen elements, find two extra relations within G.
 - (e) Conclude that G is isomorphic to the Klein group $C_2 \times C_2$.

The Klein group can be interpreted as the group of symmetries of a "regular" cross (see below). It is the smallest non-cyclic group.

- 3. Let $\delta = \sqrt{-3}$ and $R = \mathbb{Z}[\delta]$. Note that since -3 = 1[4], R is not the ring of integers of $\mathbb{Q}[\delta]$. Let $A = (2, 1 + \delta)$.
 - (a) Prove that R/A is a field and that A is maximal.
 - (b) Prove that $\overline{A}A$ is not principal and that the Main Lemma is not valid.
 - (c) Prove that A contains the ideal (2), but that A doesn't divide (2). Compare with Corollary 13.4.9 of Artin. Comments?