Problems 7

- 1. An angle θ can be trisected if it is possible to construct (with ruler and compass) an angle of value $\frac{\theta}{3}$.
 - (a) Show that π can be trisected.
 - (b) Show that $\frac{\pi}{3}$ cannot be trisected.
 - (c) Bonus : show that θ can be trisected if and only if the polynomial $4x^3 3x \cos(\theta)$ is reducible over $\mathbb{Q}(\cos(\theta))$.
- 2. (from Recitation 6)
 - (a) Let $\alpha_1, \alpha_2, \alpha_3$ denote the complex roots of $x^3 2$. Show that $[\mathbb{Q}(\alpha_1, \alpha_2) : \mathbb{Q}] = 6$.
 - (b) Let $K = \mathbb{Q}(\sqrt{2}, i)$. Show that $[\mathbb{Q}(\sqrt{2}, i) : \mathbb{Q}] = 4$.
- 3. Let $K = \mathbb{Q}(\alpha)$, where α is a root of $x^3 x 1$. Determine the irreducible polynomial of $\gamma := 1 + \alpha^2$ over \mathbb{Q} .
- 4. Determine the irreducible polynomial for $\alpha = \sqrt{3} + \sqrt{5}$ over \mathbb{Q} , then over $\mathbb{Q}(\sqrt{5})$.