Problems 7

1. An angle θ can be trisected if it is possible to construct (with ruler and compass) an angle of value $\frac{\theta}{3}$.
(a) Show that π can be trisected.
(b) Show that $\frac{\pi}{3}$ cannot be trisected.
(c) Bonus : show that θ can be trisected if and only if the polynomial $4 x^{3}-3 x-\cos (\theta)$ is reducible over $\mathbb{Q}(\cos (\theta))$.
2. (from Recitation 6)
(a) Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ denote the complex roots of $x^{3}-2$. Show that $\left[\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right): \mathbb{Q}\right]=6$.
(b) Let $K=\mathbb{Q}(\sqrt{2}, i)$. Show that $[\mathbb{Q}(\sqrt{2}, i): \mathbb{Q}]=4$.
3. Let $K=\mathbb{Q}(\alpha)$, where α is a root of $x^{3}-x-1$. Determine the irreducible polynomial of $\gamma:=1+\alpha^{2}$ over \mathbb{Q}.
4. Determine the irreducible polynomial for $\alpha=\sqrt{3}+\sqrt{5}$ over \mathbb{Q}, then over $\mathbb{Q}(\sqrt{5})$.
