Problems 1

- 1. Let G be a group. Show that the inverse of an element is unique.
- 2. Let G be a group and let $a, b, c \in G$. Show that $ab = ac \Rightarrow b = c$.
- 3. For $n \ge 1$, consider

$$SL_n(\mathbb{C}) = \{ M \in GL_n(\mathbb{C}), \det(M) = 1 \}.$$

Show that $SL_n(\mathbb{C})$ is a subgroup of $GL_n(\mathbb{C})$.

- 4. Let $H = \{1, \pm i, \pm j, \pm k\}$ with the relations $i^2 = j^2 = k^2 = ijk = -1$. Show that H is a group, called quaternions group. Is it abelian? Compute $(ij)^5$.
- 5. Let $\sigma = (134)(256) \in S_6$. Compute σ^3 . Same question with $\tau = (123456)$.
- 6. For $n \ge 2$, Show that S_n is generated by the n-1 transpositions $(12), (13), \dots, (1n)$.
- 7. Let λ, μ be real numbers. Define a binary operation * on \mathbb{R} by

$$a * b := \lambda ab + \mu(a + b).$$

Find conditions on λ, μ such that * is associative.

8. (Later) Let $n \ge 3$ and consider $A_n = \{ \sigma \in S_n, sgn(\sigma) = +1 \}$. Show that A_n is generated by the 3-cycles.