Problems 2

- 1. Let $H \subset G$ be a subgroup of G. Show that the following assertions are equivalent :
 - (i) H is a normal subgroup of G;
 - (*ii*) $H = gHg^{-1}, \ \forall g \in G;$
- $(iii) \ ghg^{-1} \in H, \ \forall g \in G, \ \forall h \in H.$
- 2. Let $\varphi: G \to H$ be a group homomorphism.
 - (a) Show that $\text{Im}(\varphi)$ is a subgroup of H.
 - (b) Show that $\ker(\varphi)$ is a normal subgroup of G.
 - (c) Show that $\ker(\varphi) = 1_G \iff \varphi$ is injective.
- 3. Let $H \subset G$ such that [G:H] = 2. Show that H is a normal subgroup of G.
- 4. Let $n \ge 3$. Show that $Z(S_n) = {\text{id}}.$