Problems 5

1. Consider the map

$$f: \mathbb{R}_n[X] \to \mathbb{R}_n[X]$$
$$P \mapsto (X^2 - 1)P'(X) - (nX + 1)P(X).$$

- (a) Show that the map f is well-defined.
- (b) For $0 \le k \le n$, consider $P_k(X) = (1 X)^k (1 + X)^{n-k}$. Compute P'_k , then $f(P_k)$.
- (c) Deduce that f is diagonalizable and bijective.
- 2. Let G be a group. For any $g \in G$, consider the map $\varphi_g : x \mapsto gxg^{-1}$. We denote by

$$Int(G) := \{\varphi_g, \ g \in G\}.$$

- (a) Show that Int(G) is a normal subgroup of Aut(G).
- (b) Consider the map $f: G \to \text{Int}(G)$, $g \mapsto \varphi_g$. Show that f is a group homomorphism and compute its kernel.
- (c) Show that $G/Z(G) \cong \text{Int}(G)$.
- 3. Let G, H be groups of finite order such that |G| = m, |H| = n with gcd(m, n) = 1. Determine all the group homomorphisms $f : G \to H$.
- 4. Find all group homomorphisms $(\mathbb{Q}, +) \to (\mathbb{Z}, +)$.
- 5. Let G be a group. An element $x \in G$ is called torsion element if $\exists n > 0, x^n = e$. The group G is called *torsion group* if all its elements are torsion elements and *torsion free* if the only torsion element of G is e.

Let G_1 be a torsion group and G_2 a torsion free group. Find all group isomorphisms $G_1 \to G_2$.