NAME :

Quiz 2

We are working over \mathbb{R}^n , $n \ge 1$. Recall that the distance between two points $u, v \in \mathbb{R}^n$ is defined by the length |u - v| of the vector u - v, where $|x| := \sqrt{x \cdot x}$, with \cdot is the usual dot product of \mathbb{R}^n .

- 1. Recall the definitions of
 - (a) an isometry of \mathbb{R}^n ;
 - (b) an orthogonal operator of \mathbb{R}^n .
- 2. Show that any orthogonal operator is an isometry.
- 3. Let $G_a = \{f : \mathbb{R} \to \mathbb{R}, x \mapsto ax + b, (a, b) \in \mathbb{R}^* \times \mathbb{R}\}$ the group of affine transformations of \mathbb{R} .
 - (a) Show that G_1 is a normal subgroup of G_a (no need to show that G_a is a group).
 - (b) Show the isomorphism $G_a/G_1 \cong \mathbb{R}^*$.