Final Exam

We are working over fields of characteristic 0.

Problem 1

1. (a) Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Show that the extension K/\mathbb{Q} is Galois and describe its Galois group.

(b) Let $\varepsilon = -3 + \frac{3\sqrt{2}}{2} + \sqrt{3} - \frac{\sqrt{6}}{2} \in K$. Consider the maps $\sigma_1, \sigma_2: K \to K$ defined by

$$\sigma_1(\sqrt{3}) = -\sqrt{3}, \ \sigma_1(\sqrt{2}) = \sqrt{2}; \ \sigma_2(\sqrt{2}) = -\sqrt{2}, \ \sigma_2(\sqrt{3}) = \sqrt{3}; \ \sigma_1|_{\mathbb{Q}} = \sigma_2|_{\mathbb{Q}} = \mathrm{id}.$$

Show that :

- (i) $\sigma_1(\varepsilon) = \varepsilon a^2$, where $a = \frac{\sqrt{2}}{2} + \frac{\sqrt{6}}{2}$;
- (ii) $a\sigma_1(a) = -1;$
- (iii) $\sigma_2(\varepsilon) = \varepsilon b^2$, where $b = 1 + \sqrt{2}$;
- (iv) $b\sigma_2(b) = -1$.
- 2. Let K/F a Galois extension satisfying [K : F] = 2; and let $Gal(K/F) = \{id, \sigma\}$. Suppose that there exists an element $\varepsilon \in K$ satisfying $\sigma_1(\varepsilon) = \varepsilon a^2$ where $a \in K$ is such that $a\sigma_1(a) = -1$. Let $L = K(\sqrt{\varepsilon})$.
 - (a) Show that L/F is Galois.
 - (b) Explain why there exists $\tau \in \text{Gal}(L/F)$ such that $\tau|_K = \sigma$. Explain why τ cannot be an element of order 2.
 - (c) Deduce that $\operatorname{Gal}(L/F)$ is cyclic of order 4.
- 3. In this question, K and ε are defined as in Question 1. Let $F_1 = \mathbb{Q}(\sqrt{2}), F_2 = \mathbb{Q}(\sqrt{3})$ and $L = K(\sqrt{\varepsilon})$.
 - (a) Draw a clear diagram of the situation.
 - (b) For $i \in \{1, 2\}$, we denote H_i the group generated by σ_i (σ_1 and σ_2 are given in 1.(b)). Show that $F_i = K^{H_i}$, where K^{H_i} is the field of the elements fixed by H_i . Deduce a description of $\text{Gal}(K/F_i)$.
 - (c) Using Question 2, describe $Gal(L/F_i)$, $i \in \{1, 2\}$.
 - (d) Show that L/\mathbb{Q} is Galois.
 - (e) Describe $\operatorname{Gal}(L/\mathbb{Q})$.

Problem 2

Notation : $a^{1/n} \equiv \sqrt[n]{a}$.

A field L is algebraically closed if every polynomial equation with coefficients in L admits a root in L. For a finite Galois extension K/F, we define the 'norm'

$$N: K \longrightarrow F$$
$$x \longmapsto \prod_{\sigma \in \operatorname{Gal}(K/F)} \sigma(x).$$

- 1. Show that the map N is well defined, that is, $N(x) \in F \quad \forall x \in K$.
- 2. Show that $N(xy) = N(x)N(y) \ \forall x, y \in K$.
- 3. Let $a \in F^{\times} \setminus (F^{\times})^p$, where p is prime. Suppose that $K = F(a^{1/p})$ and that F contains a primitive p-th root of the unity. Describe $\operatorname{Gal}(K/F)$ and show that $\sigma \in \operatorname{Gal}(K/F) \Rightarrow \sigma(a^{1/p}) = \omega a^{1/p}$, where $\omega^p = 1$. Deduce that $N(a^{1/p}) = \omega^{p(p-1)/2}a$. What happens the case where p is odd?
- 4. In the same context, show that K is not algebraically closed in general if p is odd.