Final Exam

We are working over fields of characteristic 0 .

Problem 1

1. (a) Let $K=\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Show that the extension K / \mathbb{Q} is Galois and describe its Galois group.
(b) Let $\varepsilon=-3+\frac{3 \sqrt{2}}{2}+\sqrt{3}-\frac{\sqrt{6}}{2} \in K$. Consider the maps $\sigma_{1}, \sigma_{2}: K \rightarrow K$ defined by

$$
\sigma_{1}(\sqrt{3})=-\sqrt{3}, \quad \sigma_{1}(\sqrt{2})=\sqrt{2} ; \quad \sigma_{2}(\sqrt{2})=-\sqrt{2}, \quad \sigma_{2}(\sqrt{3})=\sqrt{3} ;\left.\quad \sigma_{1}\right|_{\mathbb{Q}}=\left.\sigma_{2}\right|_{\mathbb{Q}}=\mathrm{id} .
$$

Show that:
(i) $\sigma_{1}(\varepsilon)=\varepsilon a^{2}$, where $a=\frac{\sqrt{2}}{2}+\frac{\sqrt{6}}{2}$;
(ii) $a \sigma_{1}(a)=-1$;
(iii) $\sigma_{2}(\varepsilon)=\varepsilon b^{2}$, where $b=1+\sqrt{2}$;
(iv) $b \sigma_{2}(b)=-1$.
2. Let K / F a Galois extension satisfying $[K: F]=2$; and let $\operatorname{Gal}(K / F)=\{$ id, $\sigma\}$. Suppose that there exists an element $\varepsilon \in K$ satisfying $\sigma_{1}(\varepsilon)=\varepsilon a^{2}$ where $a \in K$ is such that $a \sigma_{1}(a)=-1$. Let $L=K(\sqrt{\varepsilon})$.
(a) Show that L / F is Galois.
(b) Explain why there exists $\tau \in \operatorname{Gal}(L / F)$ such that $\left.\tau\right|_{K}=\sigma$. Explain why τ cannot be an element of order 2.
(c) Deduce that $\operatorname{Gal}(L / F)$ is cyclic of order 4 .
3. In this question, K and ε are defined as in Question 1. Let $F_{1}=\mathbb{Q}(\sqrt{2}), F_{2}=\mathbb{Q}(\sqrt{3})$ and $L=K(\sqrt{\varepsilon})$.
(a) Draw a clear diagram of the situation.
(b) For $i \in\{1,2\}$, we denote H_{i} the group generated by $\sigma_{i}\left(\sigma_{1}\right.$ and σ_{2} are given in 1.(b)). Show that $F_{i}=K^{H_{i}}$, where $K^{H_{i}}$ is the field of the elements fixed by H_{i}. Deduce a description of $\operatorname{Gal}\left(K / F_{i}\right)$.
(c) Using Question 2, describe $\operatorname{Gal}\left(L / F_{i}\right), i \in\{1,2\}$.
(d) Show that L / \mathbb{Q} is Galois.
(e) $\operatorname{Describe} \operatorname{Gal}(L / \mathbb{Q})$.

Problem 2

Notation : $a^{1 / n} \equiv \sqrt[n]{a}$.
A field L is algebraically closed if every polynomial equation with coefficients in L admits a root in L. For a finite Galois extension K / F, we define the 'norm'

$$
\begin{aligned}
& N: K \longrightarrow F \\
& x \longmapsto \prod_{\sigma \in \operatorname{Gal}(K / F)} \sigma(x) .
\end{aligned}
$$

1. Show that the map N is well defined, that is, $N(x) \in F \quad \forall x \in K$.
2. Show that $N(x y)=N(x) N(y) \forall x, y \in K$.
3. Let $a \in F^{\times} \backslash\left(F^{\times}\right)^{p}$, where p is prime. Suppose that $K=F\left(a^{1 / p}\right)$ and that F contains a primitive p-th root of the unity. Describe $\operatorname{Gal}(K / F)$ and show that $\sigma \in \operatorname{Gal}(K / F) \Rightarrow \sigma\left(a^{1 / p}\right)=\omega a^{1 / p}$, where $\omega^{p}=1$. Deduce that $N\left(a^{1 / p}\right)=\omega^{p(p-1) / 2} a$. What happens the case where p is odd?
4. In the same context, show that K is not algebraically closed in general if p is odd.
