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Image Inpainting
Image Compression

Some Maths

Overview
Examples

Goal : reconstruct missing parts of an image f : D → [0, 1] from
K ⊂ D.

Figure – Inpainting

Thomas Jacumin Image Compression by Partial Differential Equations



3/ 27

Image Inpainting
Image Compression

Some Maths

Overview
Examples

Figure – Examples [2]

Thomas Jacumin Image Compression by Partial Differential Equations



4/ 27

Image Inpainting
Image Compression
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“Classical” Compression
Compression by Inpainting

JPEG

Each block 8 × 8 of an image is described as a function

F : {0, . . . , 7}2 → R.

For 0 ≤ u, v ≤ 7,

Fu,v : (x , y) 7→ C cos
(2x + 1)uπ

16
cos

(2y + 1)vπ
16

.

Then, we can decompose F as :

F =
∑

0≤u,v≤7

cu,v Fu,v .

For compression purpose, we can neglect small cu,v .
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We do not do this : we remove parts of the image and reconstruct
them by inpainting :

Figure – Compression by Inpainting.

Thomas Jacumin Image Compression by Partial Differential Equations



6/ 27
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“Classical” Compression
Compression by Inpainting

Question 1
How to choose pixels to keep ?

Answer 1
We should keep relevant pixels to obtain a good reconstruction.

Questions 2-3
What is a good reconstruction ? How to find these pixels ?
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Résultats Numériques

Let D ⊂ R2 the support of an image f : D −→ [0, 1]. Some errors
examples

Example 1

∥u − f ∥L2(D) :=

(∫
D
(u − f )2 dx

)1/2

.

Example 2

|u − f |H1(D) :=

(∫
D
|∇u −∇f |2 dx

)1/2

.
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Shape Optimisation Problem

min
K⊆D

{E(uK ) | uK solution of an inpainting problem},

A trivial solution is K = D. We need to add constraint on the
“size” of K .

Compression problem

min
K⊆D,m(K)≤c

{E(uK ) | uK solution of an inpainting problem},

The existence of a solution depends on the inpainting problem, on
the error E and on m.

Thomas Jacumin Image Compression by Partial Differential Equations
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Problem (Homogeneous Diffusion Inpainting [1])

Find u in H1(D) such that
−∆u = 0, in D \ K ,

u = f , in K ,
∂u
∂n = 0, on ∂D.

(1)

Thomas Jacumin Image Compression by Partial Differential Equations
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Problem (Heat equation)

Find u such that
∂tu −∆u = 0, in [0,+∞[×D,

u = 100, on [0,+∞[×Γ,
∂nu = 0, on [0,+∞[×∂D \ Γ.

(2)

and u(0, ·) = 0 in D.
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Problem (Heat equation (t → +∞))

Find u such that ��∂tu −∆u = 0, in [0,+∞[×D,
u = 100, on [0,+∞[×Γ,
∂nu = 0, on [0,+∞[×∂D \ Γ.

(4)

and u(0, ·) = 0 in D.
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Theorem
If the inpainting is the homogeneous diffusion inpaiting

E(u) = |u − f |H1(D) :=

(∫
D
|∇u −∇f |2 dx

)1/2

,

and if

m(K ) = cap(K ) := inf
{∫

D
|∇u|2 dx +

∫
D
u2 dx

∣∣∣
u ∈ H1

0 (D), u ≥ 1 p.p. dans K
}
,

Then, the compression problem admits at least one solution.
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Question
In practice, how to construct K ?
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Topological Gradient

Goal : Determine the influence of make a hole in K on the error.
Let Kε := K \ B(x0, ε) such that B(x0, ε) ⊂ K .
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Topological Gradient

Goal : Determine the influence of make a hole in K on the error.
Let Kε := K \ B(x0, ε) such that B(x0, ε) ⊂ K .

j : A ⊂ D 7→ min
v∈H1(D), v=f in A

∫
D
|∇v |2 dx .

Proposition

The compression problem is equivalent to max
K⊂D, m(K)≤c

j(K ).
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Topological Gradient

max
K⊂D, m(K)≤c

j(K ) = max
K⊂D, m(K)≤c

min
v∈H1(D), v=f in K

∫
D
|∇v |2 dx

= max
K⊂D, m(K)≤c


(

min
v∈H1(D), v=f in K

∫
D\K

|∇v |2 dx

)
︸ ︷︷ ︸

≥0

+

∫
K
|∇f |2 dx

 .

Then,

max
K⊂D, m(K)≤c

∫
K
|∇f |2 dx ≤ max

K⊂D, m(K)≤c
j(K ).
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Topological Gradient
Goal : Determine the influence of make a hole in K on the error.
Let Kε := K \ B(x0, ε) such that B(x0, ε) ⊂ K .

j : A ⊂ D 7→ min
v∈H1(D), v=f in A

∫
D
|∇v |2 dx .

Proposition

The compression problem is equivalent to max
K⊂D, m(K)≤c

j(K ).

Proposition
When ε tends to 0,

j(Kε)− j(K ) = −|∆f (x0)|2
π

2
ε4 + o(ε4).
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Topological Gradient

Figure – f et |∆f |.
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Topological Gradient

Question
How to build K ?

Answer
Keep points x0 where the quantity |∆f (x0)| is maximal.
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Fat Pixels

For m > 0 and n ∈ N∗, we set

Am,n :=
{ n⋃

i=1

B(xi , r)
∣∣∣ xi ∈ D, r = mn−1/2

}
.
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Fat Pixels

Question
How to build K ?

Answer
Built K such that the pixels density increase with the quantity |∆f |.
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Figure – Topological Gradient vs Fat Pixels.

Figure – B-Tree vs Random.
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Figure – Image with Gaussian Noise.

Figure – Image with Salt and Pepper Noise.

Thomas Jacumin Image Compression by Partial Differential Equations



26/ 27

Image Inpainting
Image Compression

Some Maths

Errors
The Model
The Homogeneous Diffusion
Résultats Numériques

Figure – Image with Gaussian Noise.

Figure – Image with Salt and Pepper Noise.
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Thanks for your attention !

Z. Belhachmi, D. Bucur, B. Burgeth, and J. Weickert, How to
choose interpolation data in images, 70, pp. 333–352.

C. Schmaltz, P. Peter, M. Mainberger, F. Huth, J. Weickert, and
A. Bruhn, Understanding, optimising, and extending data
compression with anisotropic diffusion, 108.
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