
Master thesis

Super-time stepping for parabolic PDEs with
rough coefficients

Thomas Jacumin

November 22, 2018

Supervisor : Prof. Dr. Ionut Danaila University of Rouen
Prof. Dr. Daniel Peterseim University of Augsburg
Dr. Robert Altmann University of Augsburg

Co-supervisor : Roland Maier University of Augsburg

Master of Mathematics Analysis and Modelling

Abstract

We compare the effectiveness of the classical finite element method and of the localized orthog-
onal decomposition method, introduced in [6], for linear parabolic equation with highly varying
diffusion coefficient in space. The finite element method suffers from the pre-asymptotic effect
and as a result needs a fine mesh discretization, unlike the localized orthogonal decomposition
method. Then, we use the forward Euler method for the temporal discretization. Due to the
restrictive stability condition of this method, we introduce the Super-time stepping accelera-
tion, described in [1] for the temporal discretization, which have a relaxed stability condition
and which is way faster than the forward Euler method. The convergence rate depends only on
the contrast but not on the variations of the diffusion coefficient. Finally, we present numerical
experiments, which confirm our theoretical findings, and we compare each method speed.

i

Acknowledgments

First of all, I would like to express my most sincere gratitude to my supervisors Professor Doctor
Daniel Peterseim and Doctor Robert Altmann at the University of Augsburg, Germany, as well
as Professor Doctor Ionut Danaila at the University of Rouen, France. I would like to thanks
them for providing me the topic that is tightly integrated with their research.

Then, I would like to mention that my master thesis could not be accomplished without the
meticulous guidance of Roland Maier. He has largely been responsible for patiently correcting
my misconceptions and mistakes.

Finally, my family for their endless support and encouragement. Moreover, I would like to
thanks my mother and my cousin, Benoit, for helping me correct language mistakes.

iii

Contents

1 Introduction 9

1.1 Recall and notations . 9

1.2 Useful results . 10

2 Problem formulation 13

2.1 Problem . 13

2.2 Weak formulation . 13

3 Discretization in space and in time 17

3.1 Finite element meshes . 17

3.2 The piecewise affine finite element spaces . 19

3.3 The inverse inequality . 20

3.4 Time discretization . 20

4 The finite element method 21

4.1 Semi-discrete finite element method . 21

4.1.1 Formulation . 21

4.1.2 Matrix assembly . 22

4.1.3 Well-posedness . 23

4.1.4 Error estimate . 23

4.2 Explicit Euler scheme approximation . 26

4.2.1 Finite differences in time . 26

4.2.2 Formulation . 27

4.2.3 Stability and the Courant–Friedrichs–Lewy condition 27

4.2.4 Error of the completely discretized method 29

4.2.5 Matrix assembly . 30

4.2.6 Implementation in Python . 31

4.2.7 Numerical results . 32

4.3 Super-time Stepping acceleration . 35

4.3.1 Formulation . 35

4.3.2 Stability . 35

4.3.3 Error of the completely discretized method 35

4.3.4 Implementation in Python . 36

4.3.5 Numerical results . 36

1

CONTENTS

5 The localized orthogonal decomposition 39
5.1 Orthogonal decomposition . 39

5.1.1 The interpolation operator . 39
5.1.2 Definition of the multiscale space . 42
5.1.3 Formulation . 45
5.1.4 Find a base for the multiscale space . 45
5.1.5 Stability . 46
5.1.6 Error estimate . 46

5.2 Localization . 48
5.2.1 Definitions . 49
5.2.2 Formulation . 50
5.2.3 Find a basis for the localized multiscale space 50
5.2.4 Error estimate . 51

5.3 Explicit Euler scheme approximation . 54
5.3.1 Error of the full method . 54
5.3.2 Matrix assembly . 54
5.3.3 Stability and the Courant–Friedrichs–Lewy condition 55
5.3.4 Implementation in Python . 55
5.3.5 Numerical results . 55

5.4 Super-time Stepping approximation . 56
5.4.1 Formulation . 56
5.4.2 Stability . 56
5.4.3 Error of the full method . 56
5.4.4 Implementation in Python . 57
5.4.5 Numerical results . 57

6 Concluding remarks 63
6.1 Recap . 63

Bibliography 65

A FEM class 67

B LOD class 69

C FEM implementation 73
C.1 Forward Euler method . 73
C.2 Super-time Stepping acceleration . 74

D LOD implementation 77
D.1 Forward Euler method . 77
D.2 Super-time Stepping acceleration . 78

2

List of Figures

3.1 Illustration of patches. 18
3.2 Illustration of refinement. 19

4.1 Basis functions of the piecewise affine finite element space Vh. 22
4.2 Data representation in Python. 31
4.3 Illustration of the pre-asymptotic effect. 33
4.4 L2-error with respect to the mesh size h. 34
4.5 L2-error with respect to the time step ∆t. 34
4.6 Evolution of the super-step ∆T . 36
4.7 L2-error with respect to the super time step ∆T 37
4.8 Experiment data. 38
4.9 Computation with a binary diffusion coefficient. 38

5.1 Illustration of the L2(T)-orthogonal projection onto affine functions. 40
5.2 Illustration of the quasi-interpolation operator. 41
5.3 Illustration of the non-orthogonalized decomposition. 43
5.4 Basis functions of the non-localized multiscale space V ms. 45
5.5 Influence of the patches size k on the basis functions of the localized multi-scale

space V ms. 51
5.6 L2-error with respect to the coarse mesh size H 56
5.7 Balance the error convergence rate. 57

3

List of Tables

4.1 Influence of the constant CCFL on the stability. 32
4.2 Influence of the diffusion coefficient parameter β with order 1

2 on the stability. . . 32
4.3 Influence of the diffusion coefficient parameter β with order 1 on the stability. . . 32
4.4 Influence of the diffusion coefficient parameter α on the stability. 33

5.1 Speed comparison between the 4 completely discretized methods. 60

5

Introduction

In this thesis we study numerical solution of the linear parabolic equation with a highly vary-
ing diffusion coefficient. This equation happens when modeling diffusion problems in micro-
heterogeneous media. For example when modelling the thermal conduction for heterogeneous
poroelasticity or for thermoelasticity. Such problems are often referred as multiscale problems.

An optimal convergence rate of order one with respect to the mesh size h can be led by using
the classical finite elements method. However, this method suffers from the pre-asymptotic
effect. This effect appears when the mesh size is greater than ε if the diffusion coefficient varies
on a scale of ε and it implies that the numerical solution will not correspond to the exact solution
of the problem.

That is why we use the localized orthogonal decomposition method, introduced in [6], which
is a generalized finite element method. This method convergence rate is of order one with respect
to the coarse mesh size H and does not have the pre-asymptotic effect.

Concerning the discretization of the temporal domain, we use the forward Euler method.
This finite difference method is not always stable. The condition for stability is known as the
Courant–Friedrichs– Lewy condition. In order to be stable it must have ∆t . h2, where ∆t
is the time step and h the mesh size. Under this condition, the convergence rate is of order
one with respect to the time step ∆t. Afterward, we apply the Super-time stepping technique
introduced in [1]. This method requires a relaxed stability condition and have a convergence
rate of order one with respect to the super-time step ∆T . Moreover, by using this method, we
are able to balance the error. Lastly, this method is faster than the Euler one.

Outline of the thesis

Next is a brief outline of contents for each chapter.

• Chapter 1 leads into notations and some useful results.

• Chapter 2 introduces the parabolic problem that we study and the formulation of its
variational form.

• Chapter 3 discusses the two discretizations used for the domain of study and time, as well
as which properties these discretizations must have.

• Chapter 4 goes into the finite element method, and shows results about it. In this chapter
we also study the two different methods for time approximation along with their respective
stability and convergence. To finish, it presents an experimental error analysis of the
numerical methods.

7

LIST OF TABLES

• Chapter 5 examines the localized orthogonal decomposition method, and shows results
about it. After that, like in Chapter 4, it studies the same two methods for time ap-
proximation. To finish chapter 5 presents an experimental error analysis of the numerical
methods.

• Chapter 6 summarizes the most important results in this thesis, and mentions some pos-
sible applications as well as some possible improvement.

8

Chapter 1

Introduction

1.1 Recall and notations

For the convenience of the reader, notations used in this paper can be found below. In this
chapter, U denote a Lipschitz open subset of Rn, n ∈ N∗.

• Msym(U,α, β) denote the space of tensor M ∈ L∞(U,Rd×d) such that M is symmetric,

0 < α = ess infx∈U inf
v∈Rd\{0}

A(x)v · v
v · v

,

+∞ > β = ess supx∈U sup
v∈Rd\{0}

A(x)v · v
v · v

.

• H1(U) denote the classical Sobolev space with norm

‖v‖2H1(U) = ‖v‖2L2(U) + ‖∇v‖2L2(U).

• H1
0 (U) denote the space of functions in H1(U) that vanishes on ∂U . We will write ‖·‖H1

0 (U)

instead of ‖ · ‖H1(U).

• H−1(U) =
(
H1

0 (U)
)∗

denote the dual space to H1
0 (U) with norm

‖f‖H−1(U) = sup
{
< f, u > | u ∈ H1

0 (U) and ‖u‖H1
0 (U) ≤ 1

}
.

• Lp(0, T ;X), for (X, ‖ · ‖X) a Banach space, denote the Bochner space with norm

‖v‖Lp(0,T ;X) =


(∫ T

0
‖v‖pXdt

)1/p
, 1 ≤ p < +∞,

ess sup0≤t≤T ‖v‖X , p = +∞.

• We define the bilinear form

a : H1
0 (Ω)×H1

0 (Ω)→ R, (u, v) 7→
∫

Ω
(A∇u) · ∇v dx.

• We denote the L2-scalar product between u and v in L2(U), i.e. (
∫
U uv dx)1/2, by (u, v)

and the L2-norm ‖ · ‖L2(Ω) by ‖ · ‖.

• Moreover, for any u in H1
0 (U), we define ‖u‖a :=

√
a(u, u).

9

CHAPTER 1. INTRODUCTION

1.2 Useful results

We start with some unrelated theorems to help us prove results in subsequent chapters.

Theorem 1.2.1. On the space H1
0 (U), the norm and the seminorm, defined as

‖v‖2H1
0 (U) = ‖v‖2L2(U) + ‖∇v‖2L2(U),

|v|2H1
0 (U) = ‖∇v‖2L2(U),

are equivalent.

Proof. Let v be in H1
0 (U).

|v|2H1
0 (U) = ‖∇v‖2L2(U)

Since ‖v‖2L2(U) is a positive term, we can add it to the left hand side

|v|2H1
0 (U) ≤ ‖v‖

2
L2(U) + ‖∇v‖2L2(U).

Then, |v|H1
0 (U) ≤ ‖v‖H1

0 (U). To prove the other inequality, we use Poincaré

‖v‖2H1
0 (U) = ‖v‖2L2(U) + ‖∇v‖2L2(U)

≤ C2
P ‖∇v‖2L2(U) + ‖∇v‖2L2(U).

Thus, ‖v‖H1
0 (U) ≤ C|v|H1

0 (U). This conclude the proof.

Theorem 1.2.2 (Gronwall’s inequality (differential form)). Let η be a nonnegative, abso-
lutely continuous function on [0, T], which satisfies for a.e. t the differential inequality

η′(t) ≤ φ(t)η(t) + ψ(t),

where φ and ψ are nonnegative, summable functions on [0, T]. Then

η(t) ≤ e
∫ t
0 φ(s) ds

(
η(0) +

∫ t

0
ψ(s) ds

)
for all 0 ≤ t ≤ T .

Proof. This proof follows the one in [3], Section B.2.

d
ds

(
η(s)e−

∫ s
0 φ(r) dr

)
= η′(s)e−

∫ s
0 φ(r) dr − η(s)φ(s)e−

∫ s
0 φ(r) dr

= e−
∫ s
0 φ(r) dr(η′(s)− φ(s)η(s))

≤ e−
∫ s
0 φ(r) dr(φ(s)η(s) + ψ(s)− φ(s)η(s))

= ψ(s)e−
∫ s
0 φ(r) dr,

10

CHAPTER 1. INTRODUCTION

for a.e. 0 ≤ s ≤ T . Then for all 0 ≤ t ≤ T ,

η(t)e−
∫ t
0 φ(r) dr − η(0) ≤

∫ t
0 ψ(s) e−

∫ s
0 φ(r) dr︸ ︷︷ ︸
≤1

ds

≤
∫ t

0 ψ(s) ds

Thus

η(t) ≤ e
∫ t
0 φ(s) ds

(
η(0) +

∫ t

0
ψ(s) ds

)
.

11

Chapter 2

Problem formulation

This chapter introduces the problem studied in this paper. Then, it formulates the variational
form of this problem. To finish, it determines in which framework it has a solution.

2.1 Problem

We consider an open bounded polygonal/polyhedral domain Ω ⊂ Rd for d ≤ 3. Let A : Ω →
Rd×d, f : Ω× [0, T]→ R and u0 : Ω→ R. We consider A as a tensor in the theoretical part, but
A will be scalar-valued for the experiments. This two representations of the diffusion coefficient
are equivalent. We study the following problem

Problem 2.1.1. Find u(x, t) and such that
∂u
∂t − div(A∇u) = f, in Ω× (0, T],

u = 0, on ∂Ω× (0, T],
u(·, 0) = u0, in Ω,

(2.1)

where T > 0.

The first equation ∂u
∂t − div(A∇u) = f, in Ω × (0, T] corresponds to the heat equation.

The second one is the Dirichlet boundary condition. And the last one is the initial condition.
Together, they are called pure initial value problem (or Cauchy problem) for the heat equation
or in more simple terms a parabolic equation. This setting corresponds to the classic framework,
or strong formulation, of the parabolic equation. In one dimension and if f is equal to zero, it
is possible the compute the exact solution of this problem by using the separation of variables.
However in higher dimension or if f is non-zero it is really difficult to find it. That is why we
resort to numerical approximation.

2.2 Weak formulation

Now, we want to find a solution of the parabolic equation (2.1) in a bigger space than the one
in (2.1). Indeed, we wish to study the problem in which classical derivatives may not exist. In
order to do so, we work in a weaker framework. We want to formulate the variational form also
called weak formulation of our problem (2.1). If this weak formulation admits a solution and

13

CHAPTER 2. PROBLEM FORMULATION

under some regularity conditions, it is called the weak solution. The variational formulation
is the basis for the finite element method and the localized orthogonal decomposition method,
which we will study in the next two chapters. Moreover, if the classical framework is regular
enough, then this weak solution will correspond to the classical solution. Let v ∈ H1

0 (Ω). We
start from the heat equation

∂u

∂t
− div(A∇u) = f.

Then we multiply both side by v and we integrate over Ω∫
Ω

∂u

∂t
v dx−

∫
Ω

div(A∇u)v dx =

∫
Ω
fv dx.

We use the Green’s formula∫
Ω

∂u

∂t
v dx+

∫
Ω

(A∇u) · ∇v dx−
∫
∂Ω
v(A∇u) · n ds =

∫
Ω
fv dx.

As v belongs to H1
0 (Ω), v is equal to zero, in trace sens, on the border of Ω. Thus, we have∫

∂Ω v(A∇u) · n ds = 0. Finally, by using the notations introduced in Chapter 1, we have the
following variational problem

Problem 2.2.1. For all t ∈ (0, T], find u(·, t) ∈ H1
0 (Ω) such that{ (

∂u
∂t , v

)
+ a(u, v) = (f, v), ∀v ∈ H1

0 (Ω),
u(·, 0) = u0 .

(2.2)

This last problem is the weak formulation of the parabolic problem (2.1).

Definition 2.2.1 (Weak solution). Let f be in L2(0, T ;L2(Ω)) and u0 be in L2(Ω). Let A
be in Msym(U,α, β), 0 < α ≤ β. We say that u is a weak solution to the parabolic problem
(2.1) if u ∈ L2(0, T ;H1

0 (Ω)), ∂u
∂t ∈ L2(0, T ;H−1(Ω)) and u satisfies the weak formulation

(2.2).

We proved that the strong formulation implies the weak one. Now we want to demonstrate
that the other way around is also true.

Theorem 2.2.1. Suppose u(·, t) ∈ H1
0 (Ω) such that ∂u

∂t (·, t) ∈ C0(Ω̄) and u(·, t) ∈ C2(Ω).
If u is a solution of (2.2), then u is a solution of (2.1).

Proof. We suppose u(·, t) ∈ H1
0 (Ω) to be a solution of (2.2). Then for all v in H1

0 (Ω), we have(
∂u

∂t
, v

)
+ a(u, v) = (f, v).

By using again the Green’s formula and the fact that v vanishes on ∂Ω, we have

14

CHAPTER 2. PROBLEM FORMULATION

(
∂u

∂t
− div(A∇u)− f, v

)
= 0.

As the set of bump functions i.e. C∞c (Ω), is a subset of H1
0 (Ω), and if we suppose that

∂u
∂t (·, t) ∈ C0(Ω̄) and u(·, t) ∈ C2(Ω), we can apply the fundamental lemma of calculus of
variations and conclude that

∂u

∂t
− div(A∇u)− f = 0.

Under these conditions, the classical problem and the weak formulation are equivalent, in
other words, if u is the solution of (2.1) then u is also the solution of (2.2) and vice-versa.

Theorem 2.2.2 (Stability). Let u be the solution of (2.2). For all t ∈ (0, T], we have the
following results

‖u(t)‖ ≤ C
(
‖u0‖+

∫ t

0
‖f(s)‖ ds

)
, (2.3)∥∥∥∥∂u∂t (t)

∥∥∥∥ ≤ C(‖u0‖+ ‖f(t)‖+

∫ t

0
‖f(s)‖ ds

)
, (2.4)

‖u(t)‖a ≤ C ′
(
‖u0‖+ ‖f(t)‖+

∫ t

0
‖f(s)‖ ds

)
. (2.5)

Proof. For a more general case, see [3]. We start from the first equation of (2.2) and we put u
instead v (∂u

∂t
, u
)

+ a(u, u) = (f, u).

We have

|(f, u)| ≤ 1

2
‖f‖2 +

1

2
‖u‖2,

by using Cauchy-Schwarz inequality and the fact that 1
2(a2 + b2) ≥ ab, and(∂u

∂t
, u
)

=
∂

∂t

(1

2
‖u‖2

)
.

Then
∂

∂t

(1

2
‖u‖2

)
+ a(u, u) ≤ 1

2
‖f‖2 +

1

2
‖u‖2. (2.6)

Furthermore, we have that a is coercive

a(u, u) ≥ C(α)‖u‖2H1
0 (Ω), C(α) > 0.

Then we have

15

CHAPTER 2. PROBLEM FORMULATION

∂
∂t

(
‖u‖2

)
+ 2C(α)‖u‖2

H1
0 (Ω)

≤ ∂
∂t

(
‖u‖2

)
+ 2a(u, u)

= 2(∂u∂t , u) + 2a(u, u)
= 2(f, u)
≤ ‖f‖2 + ‖u‖2.

Thus, because 2C(α)‖u‖2
H1

0 (Ω)
≥ 0,

∂

∂t

(
‖u‖2

)
≤ ‖f‖2 + ‖u‖2. (2.7)

The Gronwall’s inequality implies

‖u(t)‖2 ≤ et
(
‖u0‖2 +

∫ t

0
‖f(s)‖2 ds

)
for all 0 ≤ t ≤ T . We have the result (2.3). By combining (2.7) and (2.3) we obtain (2.4).

Finally, let us come back to (2.6) and since ∂
∂t

(
1
2‖u‖

2
)

= 1
2‖

∂u
∂t ‖

2 ≥ 0, we have

a(u, u) ≤ 1

2
‖f‖2 +

1

2
‖u‖2.

Again, by combining the inequality above and (2.3), we get (2.5).

16

Chapter 3

Discretization in space and in time

Here, we discretize our space of solution. First, we introduce the notion of mesh for our domain
Ω. Then, we define the notations we use for the time discretization.

3.1 Finite element meshes

Before discretizing the space, we define the notion of mesh and what kind of properties they
should have. The following definition is from [10].

Definition 3.1.1 (Regular simplicial mesh). A finite subdivision

τ := {Tj | 1 ≤ j ≤ Nτ}

of Ω ⊂ Rd into closed non-empty simplices (denoted elements), i.e.

Ω̄ =

Nτ⋃
j=1

Tj

is said to be regular if any two elements T1, T2 ∈ τ are either disjoint or share exactly on
vertex or one edge (d ≥ 2) or one face (d = 3).

Notations 1. We denote the size of an element K of a regular simplicial mesh by hK := diam(K).

With this notation, it is natural to define a regular simplicial mesh with a specific size for
the elements.

Definition 3.1.2 (Regular simplicial mesh of size h). Let τ be a regular simplicial mesh.
It is said of size h > 0 if

max
K∈τ

hK = h.

Then we write τh.

Now we will define the patches of an element.

17

CHAPTER 3. DISCRETIZATION IN SPACE AND IN TIME

Definition 3.1.3 (Patches). Let τ be a regular simplicial mesh. For all T ∈ τ we define
ωk(τ, T) to be the patch of size k, where{

ω0(τ, T) := T,
ωk(τ, T) :=

⋃{
K ∈ τ | K̄ ∩ ωk−1 6= ∅

}
, k ∈ N.

Here is a picture (Figure 3.1) to illustrate the definition above for k = {0, 1, 2}. We fill with
red the element T of the definition. The neighbor of this element T are in pink. Together their
formed the set ωk(τ, T).

(a) Patches of T for k = 0. (b) Patches of T for k = 1. (c) Patches of T for k = 2.

Figure 3.1: Illustration of patches.

To finish, we need one last definition. This definition will be useful for the localized orthog-
onality decomposition in Chapter 5.

Definition 3.1.4 (Refinement). Let τh and τH be two regular meshes of Ω with 0 < h ≤ H.
We said τh to be a refinement of τH if

∀K ∈ τH , ∃IK ⊂ N∗, K =
⋃
i∈IK

ki, ki ∈ τh.

Again, here is a picture (Figure 3.2) to illustrate the definition above. We are in the case
d equal to 2. τh is in red and τH is in black. On the left picture, the node in the middle of
τH (in black) does not coincide with any node of τh (in red). As a result we cannot decompose
an element of τH by elements of τh. However, on the second picture we clearly see that τh is a
refinement of τH .

18

CHAPTER 3. DISCRETIZATION IN SPACE AND IN TIME

(a) τh is not a refinement of τH . (b) τh is a refinement of τH .

Figure 3.2: Illustration of refinement.

In this section we saw how to discretize our domain Ω. It is important to notice that for
implementations we will use quadrilaterals as elements instead of triangles. In the next section
we define the finite element space in which our approximate functions will belong to.

3.2 The piecewise affine finite element spaces

To begin, we define the piecewise affine finite element spaces.

Definition 3.2.1 (The piecewise affine finite element space). Let τh be a regular simplicial
mesh of size h > 0. We define his associated piecewise affine finite element space by

Vh := {v ∈ C0(Ω̄) | v = 0 on ∂Ω and v|K ∈ P1, ∀K ∈ τh}.

As said before the approximation of our functions will be in these piecewise affine finite ele-
ment spaces. For quadrilaterals elements instead of triangles, the piecewise affine finite element
spaces are referred as Q1 instead of P1.

Lemma 3.2.1. Let τh and τH be two regular meshes of Ω, 0 < h ≤ H. Let Vh and VH be
their respective piecewise affine finite element spaces. We suppose that τh is a refinement of
τH . Then VH ⊆ Vh.

Proof. Let vH be in VH . We need to show that vH belongs to Vh. In other words, for any
element Kh in τh, we must have that vH |Kh is affine i.e. is in P1.

Let us take an element Kh in τh. We affirm that there exists an unique element KH ∈ τH
such that Kh ⊂ KH . We split the proof of the last statement in two parts. First we will prove
the existence, and then the uniqueness.

• Existence : We will proceed by contradiction. Suppose that for all KH ∈ τH , Kh * KH . Let
TH be an element of τH such that TH ∩Kh 6= ∅. Such a TH exists. Indeed, Kh ⊂

⋃
iK

i
h = Ω̄ =⋃

jK
j
H , where Ki

h (resp. Kj
H) are elements of Vh (resp. VH). However, it may not be unique.

19

CHAPTER 3. DISCRETIZATION IN SPACE AND IN TIME

If so, we randomly choose one. Since τh is a refinement of τH , we know that there exists a set
I ⊂ N∗ such that TH =

⋃
i∈I T

i
h, T ih ∈ τh. By definition of TH , we have

TH ∩Kh 6= ∅ ⇔
(⋃
i∈I

T ih

)
∩Kh 6= ∅ ⇒ ∃i ∈ I, T ih = Kh.

The last statement is easily understandable since we have regular simplicial mesh i.e. every
element of τh are two by two disjoint. Thus we have Kh ⊂ TH . This is in contradiction with
our assumption.
• Uniqueness : We showed that there exists KH ∈ τH such that Kh ⊂ KH . Again we will
proceed by contradiction. Let us take K1

H and K2
H in τH such that Kh ⊂ K1

H and Kh ⊂ K2
H .

Moreover we suppose that K1
H 6= K2

H . We have

Kh ⊆ K1
H ∩K2

H .

This statement is impossible since we have regular simplicial mesh.

We successfully managed to prove that there exists an unique KH ∈ τH such that Kh ⊂ KH .
We can come back to the proof of the Lemma now. Let KH be in τH such that Kh ⊂ KH . As
vH is in VH , we know that vH |KH is an affine function. Then, so is vH |Kh .

From now, when we write Vh we implicitly declare the mesh τh to whom Vh is associated.

3.3 The inverse inequality

Later in this master thesis, we will have to use the inverse inequality below.

Theorem 3.3.1 (Inverse property). Let Vh be a piecewise affine finite element space. Then
Vh satisfies the inverse property

‖∇vh‖ ≤ Cinv h
−1‖vh‖, ∀vh ∈ Vh.

Proof. A more general version can be found in Section 8.5 of [9]. Otherwise there is a simpler
proof in [2] for the one and two dimensional cases.

We recall that ‖∇ · ‖ is also the semi-norm of H1
0 (Ω), which is | · |H1

0 (Ω). As a result for

any uh and vh in Vh we can bound the bilinear form a by the L2-norm of uh and vh i.e.
a(uh, vh) ≤ C h−2‖uh‖ ‖vh‖.

3.4 Time discretization

To discretize in time we introduce the uniform discretization

0 = t0 < t1 < · · · < tN = T

and define ∆t := tn − tn−1, ∀n ∈ {1, . . . , N}. This ∆t is constant for every time step since the
discretization is uniform.

At this point of the document, we have everything we need to start working on computing
a solution for our parabolic problem.

20

Chapter 4

The finite element method

In the previous chapters, we formulated our problem and we discretized our spaces in order to
be able to compute the solution. Computing the solution will be achieved by the following to
steps. First we approximate the problem in space using the finite element method. Then, we
approximate it in time by using the forward Euler method and later by using the Super-time
stepping acceleration.

We work on a piecewise affine finite element space Vh with 0 < h. All along this chapter,
Nh denote the nodes of Vh, N̊h denote the interior nodes of Vh and (Φi)i∈Nh denote the basis
functions of Vh.

4.1 Semi-discrete finite element method

To begin, we approximate our weak formulation in space. As said before, we use the finite
element method.

4.1.1 Formulation

First, let us recall the weak formulation of the parabolic problem (2.1)

Problem. For all t ∈ (0, T], find u(·, t) ∈ H1
0 (Ω) such that{ (

∂u
∂t , v

)
+ a(u, v) = (f, v), ∀v ∈ H1

0 (Ω),
u(·, 0) = u0 .

We make the approximation in space using the classical finite element method, and we get
the following problem

Problem 4.1.1. For all t ∈ (0, T], find uh(·, t) ∈ Vh such that{ (
∂uh
∂t , vh

)
+ a(uh, vh) = (f, vh), ∀vh ∈ Vh,

uh(·, 0) = Ph ◦ u0 .
(4.1)

21

CHAPTER 4. THE FINITE ELEMENT METHOD

Where Ph : H1
0 (Ω)→ Vh is a projection from H1

0 (Ω) into Vh. Here is a representation in one
dimension of some basis functions Φi of the finite element space Vh.

Figure 4.1: Basis functions of the piecewise affine finite element space Vh.

In one dimension, these functions, also called hat functions due to their shape, can be
explicitly computed.

4.1.2 Matrix assembly

Now, we write an equivalent matrices formulation of the problem (4.1). We start with the first
equation. For any vh in Vh, we have(

∂uh
∂t

, vh

)
+ a(uh, vh) = (f, vh)

As uh is in Vh, we can decompose uh in the basis of Vh i.e. uh(t) =
∑

i∈Nh uh|i(t)Φi. Then(
∂uh
∂t

(t), vh

)
+ a(uh(t), vh) = (f(t), vh)

⇔

 ∂

∂t

∑
i∈Nh

uh|i(t)Φi, vh

+ a

∑
i∈Nh

uh|i(t)Φi, vh

 = (f(t), vh)

⇔
∑
i∈Nh

∂uh|i
∂t

(t)
(
Φi, vh

)
+
∑
i∈Nh

uh|i(t)a(Φi, vh) = (f(t), vh).

We replace the test function vh by Φj , ∀j ∈ Nh∑
i∈Nh

∂uh|i
∂t

(t)
(
Φi,Φj

)
+
∑
i∈Nh

uh|i(t)a(Φi,Φj) = (f(t),Φj).

Thus, we obtain the weak formulation under matrix form

Problem 4.1.2. For all t ∈ (0, T], find Uh(t) such that{
M∂Uh

∂t (t) + SUh = F,
Uh(0) =

(
(Ph ◦ u0)|0, . . . , (Ph ◦ u0)|N

)T
.

(4.2)

22

CHAPTER 4. THE FINITE ELEMENT METHOD

where

• M = [mij](i,j)∈N 2
h
, mij =

∫
Ω ΦiΦj dx, is the mass matrix,

• S = [sij](i,j)∈N 2
h
, sij =

∫
Ω(A∇Φi) · ∇Φj dx, is the stiffness matrix,

• Uh = (uh|0, . . . , uh|N)T , N = |Nh|,

• F = [Fi]i∈Nh , Fi =
∫

Ω f(t)Φi dx.

This formulation allows us to realize the implementation of the finite element approximation
of the parabolic problem in Section 4.2.6 and in Section 4.3.4. Furthermore, we will be able to
prove the existence and uniqueness of the solution uh of the finite element problem (4.1).

4.1.3 Well-posedness

Now, we verify that the problem (4.1) is well-posed i.e. we check either the stability, the exis-
tence and the uniqueness of the solution.

Theorem 4.1.1 (Stability). Let uh be the solution of (4.1). For all t ∈ (0, T], we have the
following results

‖uh(t)‖ ≤ C
(
‖Ph ◦ u0‖+

∫ t

0
‖f(s)‖ ds

)
, (4.3)∥∥∥∥∂uh∂t (t)

∥∥∥∥ ≤ C(‖Ph ◦ u0‖+ ‖f(t)‖+

∫ t

0
‖f(s)‖ ds

)
, (4.4)

‖uh(t)‖a ≤ C ′
(
‖Ph ◦ u0‖+ ‖f(t)‖+

∫ t

0
‖f(s)‖ ds

)
. (4.5)

Proof. We proceed in the same way as for the stability of u, Theorem 2.2.2.

We proved the stability of the finite element methods. This stability ensure us that the
approximate solution will note growth to infinity. It remains to verify the existence and the
uniqueness of the solution in order to prove well-posedness.

Theorem 4.1.2 (Existence and uniqueness). There exists a unique solution of (4.1).

Proof. Since the mass matrix M in invertible, and the system (4.2) is an ordinary differential
equations system, there is a unique solution for t ∈ [0, T].

4.1.4 Error estimate

In this section, we estimate the error due to the finite element method.

23

CHAPTER 4. THE FINITE ELEMENT METHOD

Lemma 4.1.1. Let us define Eh : H1
0 (Ω)→ Vh to be the elliptic projection from H1

0 (Ω) into
Vh i.e. for any v ∈ H1

0 (Ω),

a
(
Ehv, wh

)
= a

(
v, wh

)
, ∀w ∈ Vh.

Then, for any v in H1
0 (Ω), we have

‖v − Ehv‖ ≤ C(‖A‖W 1,∞(Ω), α, β)h‖v‖a.

Proof. We consider the following auxiliary problem : find z in H1
0 (Ω) such that

a(z, w) = (v − Ehv, w), ∀w ∈ H1
0 (Ω). (4.6)

Remplacing w by v − Ehv leads to

‖v − Ehv‖2 = a(z, v − Ehv)

Since Ehz belongs to Vh, we have that a(Ehz, v − Ehv) = 0 by definition of Eh. Then

‖v − Ehv‖2 = a(z − Ehz, v − Ehv)

≤ ‖z − Ehz‖a‖v − Ehv‖a.

‖z − Ehz‖a is the a-norm of the error due to the Galerkin approximation of the elliptic
problem (4.6). This error estimate has been computed in [2], Section 4.5. Hence

‖z − Ehz‖a ≤ C(‖A‖W 1,∞(Ω), α, β)h‖v − Ehv‖.

Then, ‖v − Ehv‖ ≤ C(‖A‖W 1,∞(Ω), α, β)h‖v − Ehv‖a. Finally, we have

‖v − Ehv‖2a = a(v − Ehv, v − Ehv)

= a(v − Ehv, v)− a(v − Ehv, Ehv)

Since Ehv lives in Vh we have a(v − Ehv, Ehv) = 0. Thus

‖v − Ehv‖2a = a(v − Ehv, v)

≤ ‖v − Ehv‖a‖v‖a.

It yields ‖v − Ehv‖ ≤ C(‖A‖W 1,∞(Ω), α, β)h‖v‖a. We have the result.

Theorem 4.1.3 (Error due to finite element approximation). Let u be the solution of (2.2)
and uh be the solution of (4.1). Then for all t ∈ (0, T], we have

‖u(t)− uh(t)‖ ≤ C
(
‖A‖W 1,∞(Ω), α, β

)(
‖u0 − Ph ◦ u0‖+ h‖u(t)‖a

)
.

24

CHAPTER 4. THE FINITE ELEMENT METHOD

Proof. This proof will follow the one in [5]. Let us define Eh : H1
0 (Ω) → Vh as in Lemma 4.1.1.

Thus if v ∈ H1
0 (Ω) is the solution of the following elliptic problem

a(v, w) = (f, w), ∀w ∈ H1
0 (Ω)

then Ehv ∈ Vh is the finite element approximation of v. We fix t ∈ [0, T]. The idea of this
proof is to split the error in two parts.

‖u(t)− uh(t)‖ ≤ ‖u(t)− Eh[u(t)]︸ ︷︷ ︸
=:ε1(t)

‖+ ‖ Eh[u(t)]− uh(t)︸ ︷︷ ︸
=:ε2(t)

‖.

• ε1 : By using Lemma 4.1.1, we have

‖ε1(t)‖ = ‖u(t)− Eh[u(t)]‖ ≤ C(‖A‖W 1,∞(Ω), α, β)h‖u(t)‖a.
• ε2 : We put ε2(t) instead of uh(t) in Problem 4.1(
∂ε2(t)

∂t
, vh

)
+ a(ε2(t), vh) =

(
∂Eh[u(t)]

∂t
, vh

)
+ a(Eh[u(t)], vh)−

((∂uh(t)

∂t
, vh

)
+ a(uh(t), vh)︸ ︷︷ ︸

=(f(t),vh)

)
,

since uh solve Problem 4.1. Furthermore Eh[u(t)] satisfies the Galerkin orthogonality i.e.
a(Eh[u(t)], wh) = a(u(t), wh) for any w ∈ Vh(

∂ε2(t)

∂t
, vh

)
+ a(ε2(t), vh) =

(
∂Eh[u(t)]

∂t
, vh

)
+ a(u(t), vh)− (f(t), vh)

=

(
∂Eh[u(t)]

∂t
, vh

)
−
(
∂u(t)

∂t
, vh

)
= −

(
∂ε1(t)

∂t
, vh

)
.

Thus ε2 solve our parabolic problem 4.1 for f = −∂ε1
∂t and u0 = ε2(0). We can apply the

stability Theorem 4.1.1 and get the estimate

‖ε2(t)‖ ≤ C
(
‖ε2(0)‖+

∫ t

0

∥∥∥∥∂ε1∂t (s)

∥∥∥∥ ds
)

= C
(
‖ε2(0)‖+ ‖ε1(t)‖ − ‖ε1(0)‖

)
Here

‖ε2(0)‖ = ‖Ehu0 − Ph ◦ u0‖ ≤ ‖Ehu0 − u0‖+ ‖u0 − Ph ◦ u0‖ = ‖ε1(0)‖+ ‖u0 − Ph ◦ u0‖.

Combining with the estimation of ‖ε1(t)‖L2(Ω)

‖ε2(t)‖ ≤ C
(
‖ε2(0)‖+ ‖ε1(t)‖ − ‖ε1(0)‖

)
≤ C

(
‖ε1(0)‖+ ‖u0 − Ph ◦ u0‖+ ‖ε1(t)‖ − ‖ε1(0)‖

)
≤ C

(
‖u0 − Ph ◦ u0‖+ ‖ε1(t)‖

)
≤ C

(
‖A‖W 1,∞(Ω), α, β

)(
‖u0 − Ph ◦ u0‖+ h‖u(t)‖a

)
.

We sum the estimation above with the estimation of ‖ε1(t)‖ and we end the proof.

25

CHAPTER 4. THE FINITE ELEMENT METHOD

Note 1. If we use the elliptic projection Eh instead of Ph, we get

‖u(t)− uh(t)‖ ≤ C ′
(
‖A‖W 1,∞(Ω), α, β

)
h
(
‖u0‖+ ‖u(t)‖a

)
.

Indeed, we have

‖u(t)− uh(t)‖ ≤ C
(
‖A‖W 1,∞(Ω), α, β

)(
‖u0 − Eh ◦ u0‖+ h‖u(t)‖a

)
By applying Lemma 4.1.1 on ‖u0 − Eh ◦ u0‖,

‖u(t)− uh(t)‖ ≤ C ′
(
‖A‖W 1,∞(Ω), α, β

)
h
(
‖u0‖a + ‖u(t)‖a

)
.

4.2 Explicit Euler scheme approximation

In the beginning of the chapter, we said that we will use two different methods to do the
approximation in time. In this section we will see the first one, the explicit Euler scheme
also called forward Euler scheme. We first write the formulation of the completely discretized
method. Then, we move on the stability and the error. And finally, we implement the method
in Python and present some numerical results.

4.2.1 Finite differences in time

To the aim of clearness we introduce the following notation.

Notations 2. For a function v : Ω× (0, T]→ R, we denote v(·, n∆t) by v|n(·).

Theorem 4.2.1. Let u : Ω× (0, T]→ R. Let x ∈ Ω. We suppose that u(x, ·) is at least C1

in time. Then we have

∂u|n(x)

∂t
=
u|n+1(x)− u|n(x)

∆t
+O(∆t).

Proof. Taylor expansion leads to

u|n+1(x) := u
(
x, (n+ 1)∆t

)
= u(x, n∆t) + ∆t

∂u(x, n∆t)

∂t
+O(∆t2)

= u|n(x) + ∆t
∂u|n(x)

∂t
+O(∆t2)

Thus

∂u|n(x)

∂t
=
u|n+1(x)− u|n(x)

∆t
+O(∆t)

This theorem will be the keystone of the forward Euler method discussed in the next section.

26

CHAPTER 4. THE FINITE ELEMENT METHOD

4.2.2 Formulation

We formulate the completely discretized problem.

Definition 4.2.1. Let uh be the solution of (4.1). We denote by ūh the approximation of
uh such that

∂ūh
∂t

=
uh|n+1 − uh|n

∆t
.

Using this definition leads us

(
ūh|n+1 − ūh|n

∆t
, vh

)
+ a(ūh|n, vh) = (f |n, vh), ∀vh ∈ Vh(

ūh|n+1, vh
)
−
(
ūh|n, vh

)
+ ∆t a(ūh|n, vh) = ∆t(f |n, vh), ∀vh ∈ Vh(

ūh|n+1, vh
)

=
(
ūh|n, vh

)
+ ∆t

(
(f |n, vh)− a(ūh|n, vh)

)
, ∀vh ∈ Vh

This gives us the final problem

Problem 4.2.1. Knowing ūh|n, find ūh|n+1 ∈ Vh such that{ (
ūh|n+1, vh

)
=
(
ūh|n, vh

)
+ ∆t

(
(f |n, vh)− a(ūh|n, vh)

)
, ∀vh ∈ Vh,

ūh|0 = Ph ◦ u0 .
(4.7)

4.2.3 Stability and the Courant–Friedrichs–Lewy condition

As we use the forward Euler scheme in time, our scheme is not always stable. In this section
we will find the condition between the discretization parameters h and ∆t for the scheme to be
stable. This condition is known as the Courant–Friedrichs–Lewy condition.

Theorem 4.2.2 (Stability). If we suppose

1− Cinvβh
−2 ∆t

2
≥ 0 (4.8)

then the scheme (4.7) is stable i.e. if ūh is the solution of (4.7), then for any n we have

‖ūh|n+1‖ ≤ ‖Ph ◦ u0‖+ 2∆t
n∑
j=0

‖f |j‖.

Proof. This proof will follow the idea in [2]. First of all we suppose that (4.8) holds. Then we
use ūh|n+1 as test function in (4.7). It gives

27

CHAPTER 4. THE FINITE ELEMENT METHOD

‖ūh|n+1‖2 =
(
ūh|n, ūh|n+1

)
+ ∆t

(
(f |n, ūh|n+1)− a(ūh|n, ūh|n+1)

)
.

The trick here is to use the two following identities : for any u and v in H1
0 (Ω), we have

(u, v) = −1

2

(
‖u− v‖2 − ‖u‖2 − ‖v‖2

)
,

a(u, v) =
1

4
‖u+ v‖2a −

1

4
‖u− v‖2a.

Thus we have

‖ūh|n+1‖2 = −1

2

(
‖ūh|n+1 − ūh|n‖2 − ‖ūh|n+1‖2 − ‖ūh|n‖2

)
+ ∆t(f |n, ūh|n+1)−

∆t
1

4
‖ūh|n+1 + ūh|n‖2a + ∆t

1

4
‖ūh|n+1 − ūh|n‖2a

‖ūh|n+1 − ūh|n‖2 + ‖ūh|n+1‖2 − ‖ūh|n‖2 +
∆t

2
‖ūh|n+1 + ūh|n‖2a−

∆t

2
‖ūh|n+1 − ūh|n‖2a = 2∆t(f |n, ūh|n+1).

Since ‖ūh|n+1 + ūh|n‖2a is positive, we have

‖ūh|n+1 − ūh|n‖2 + ‖ūh|n+1‖2 − ‖ūh|n‖2 −
∆t

2
‖ūh|n+1 − ūh|n‖2a ≤ 2∆t(f |n, ūh|n+1).

The troublesome term is −∆t
2 ‖ūh|

n+1 − ūh|n‖2a because it is negative. The term −‖ūh|n‖2 is
also negative but is not a problem for us since ‖ūh|n+1 − ūh|n‖2 ≥ ‖ūh|n‖2 − ‖ūh|n+1‖2. Thus,
we move the troublesome term to the right hand side and we use the boundedness of a and the
inverse inequality

‖ūh|n+1 − ūh|n‖2 + ‖ūh|n+1‖2 − ‖ūh|n‖2 ≤ 2∆t(f |n, ūh|n+1) + Cinvβh
−2 ∆t

2
‖ūh|n+1 − ūh|n‖2.

Now, we move it to the left hand side

(
1− Cinvβh

−2 ∆t

2

)
‖ūh|n+1 − ūh|n‖2 + ‖ūh|n+1‖2 − ‖ūh|n‖2 ≤ 2∆t(f |n, ūh|n+1).

As we supposed that 1 − Cinvβh
−2 ∆t

2 ≥ 0, the inequality above and the Cauchy-Schwarz
inequality gives

‖ūh|n+1‖2 − ‖ūh|n‖2 ≤ 2∆t‖f |n‖‖ūh|n+1‖

≤ 2∆t‖f |n‖
(
‖ūh|n+1‖+ ‖ūh|n‖

)
28

CHAPTER 4. THE FINITE ELEMENT METHOD

and finally,

‖ūh|n+1‖ − ‖ūh|n‖ ≤ 2∆t‖f |n‖

or

‖ūh|n+1‖ ≤ ‖ūh|n‖+ 2∆t‖f |n‖.

By immediate recursivity and that ūh|0 = Ph ◦ u0, we obtain the result

‖ūh|n+1‖ ≤ ‖Ph ◦ u0‖+ 2∆t

n∑
j=0

‖f |j‖.

Note 2. In this paper, we only proved that this condition is sufficient to have the stability of
the forward Euler-Galerkin method. It can be rewritten to emphasizes the link between the
mesh size h and the time step ∆t as ∆t ≤ 2C−1

invβ
−1h2. We notice that this condition is very

restrictive since we require a very small time steps to ensure the stability. It is even worst for
contrasted media i.e. for large β.

4.2.4 Error of the completely discretized method

Let’s estimate the error due to the approximations. We first need to find the error due to the
forward Euler scheme.

Theorem 4.2.3 (Error due to the forward Euler scheme). Let uh be the solution of (4.1)
and be C2 in time and ūh be the solution of (4.7). If we suppose that uh is C2 in time
and that the Courant–Friedrichs–Lewy condition (4.8) true then we have the following error
estimation

‖uh|n − ūh|n‖ ≤ C
(
n,

∥∥∥∥∂2uh
∂t2

∥∥∥∥)∆t.

Proof. Let us define the discretization error by

en := uh|n − ūh|n

Taylor’s expansion with integral remainder gives us

uh|n+1(x) = uh|n(x) + ∆t
∂uh
∂t
|n(x) +Rn(x),

where Rn(x) =
∫ tn+1

tn
(tn+1 − t)∂

2uh(x,t)
∂t2

dt. We have for all vh in Vh

29

CHAPTER 4. THE FINITE ELEMENT METHOD

(en+1, vh) = (uh|n+1, vh)− (ūh|n+1, vh)

= (uh|n, vh) + ∆t

(
∂uh
∂t
|n, vh

)
+ (Rn(x), vh)− (ūh|n+1, vh)

= (uh|n, vh) + ∆t
(

(f |n, vh)− a(uh|n, vh)
)
−
(
ūh|n, vh

)
−∆t

(
(f |n, vh)− a(ūh|n, vh)

)
+ (Rn(x), vh)

= (en, vh)−∆ta(en, vh) + (Rn(x), vh)

= (en, vh) + ∆t
(

(
1

∆t
Rn(x), vh)− a(en, vh)

)

Thus, en satisfies the problem (4.7) with u0 = e0 and f |n = 1
∆tRn. Under the Courant–Friedrichs–

Lewy condition we can apply the stability theorem 4.2.2 and we get the following estimate

‖en+1‖ ≤ ‖e0‖+ 2∆t
n∑
j=0

∥∥∥∥ 1

∆t
Rj

∥∥∥∥ = ‖e0‖+ 2∆t
n∑
j=0

∥∥∥∥∥
∫ tj+1

tj

tj+1 − t
∆t

∂2uh(·, t)
∂t2

dt

∥∥∥∥∥ .
We have ‖e0‖ = ‖uh|0− ūh|0‖ = ‖Ph ◦u0−Ph ◦u0‖ = 0. Then by switching the integral and

the L2-norm we get

‖en+1‖ ≤ 2∆t

n∑
j=0

∫ tj+1

tj

tj+1 − t
∆t

∥∥∥∥∂2uh(·, t)
∂t2

∥∥∥∥ dt.

In addition, we have
tj+1−t

∆t ≤ 1 for all t between tj and tj+1. Then

‖en+1‖ ≤ 2∆t
n∑
j=0

∫ tj+1

tj

∥∥∥∥∂2uh(·, t)
∂t2

∥∥∥∥ dt = 2∆t

∫ tn+1

0

∥∥∥∥∂2uh(·, t)
∂t2

∥∥∥∥ dt.

Now, we have everything we need to estimate the error of the completely discretized method.

Theorem 4.2.4 (Error of the completely discretized method). Let u be the solution of (2.2)
and C2 in time, uh be the solution of (4.1) and C2 in time, and ūh be the solution of (4.7).
Then for all n we have

‖u|n − ūh|n‖ ≤ C
(
β, α−1, n, ‖f |n‖,

∥∥∥∥∂2uh
∂t2
|n
∥∥∥∥)(‖u0 − Ph ◦ u0‖+ h+ ∆t

)
.

Proof. Use the triangle inequality, Theorem 4.2.3 and 4.1.3.

4.2.5 Matrix assembly

In order to implement our approximate scheme with a computer, we have to construct an
equivalent problem with matrices. We start from (4.7) and you do the same kind of computation
as for the matrix assembly for the semi-discretized finite element method in Section 4.1.2. Thus
we obtain

30

CHAPTER 4. THE FINITE ELEMENT METHOD

Problem 4.2.2. Knowing Ūh|n, find Ūh|n+1 such that{
MŪh|n+1 =

(
M−∆tS

)
Ūh|n + ∆tF|n,

Ūh|0 =
(
(Ph ◦ u0)|0, . . . , (Ph ◦ u0)|N

)T
.

(4.9)

where

• Ūh|n = (ūh|n0 , . . . , ūh|nN)T , where N = NH ,

• F|n = [Fi]i∈Nh , Fi =
∫

Ω f |
nΦi dx.

4.2.6 Implementation in Python

In order to do the implementation of the finite element method in python, and later the imple-
mentation of the localized orthogonal decomposition method, we use the python library gridlod
[4]. This library only works on the domain Ω = [0, 1]d with d ∈ {1, 2, 3}. Moreover, we can only
take an approximation of f in Vh. Thus we have F|n = MF |n, where F |n = (f |n0 , · · · , f |nN)T and
M. The reader can find all the python code in Appendix. For the finite element method, see
Appendix A and Appendix C.1. Now let us explain some important point of the code. First to
define a mesh, we use

1 NFine = np . array ([Nx, Ny])

This allows us to create a two dimensional mesh with Nx elements in the x direction and Ny
elements in the y direction. The diffusion coefficient A is defined by a constant on each element
(see Figure 4.2). It must be a vector of size Nx × Ny. Unlike the diffusion coefficient, each
functions are defined on each node of the mesh (see Figure 4.2). Thus they must be a vector of
size (Nx+ 1)× (Ny + 1).

(a) Representation of the dif-
fusion coefficient A.

(b) Representation of func-
tions, for example f .

Figure 4.2: Data representation in Python.

In order to compute the mass matrix M and the stiffness matrix S we use

1 problemFEM . assembleMatr ices ()

Finally, to solve our finite element method with the forward Euler scheme (4.9) we use

1 problemFEM . so lveStep (xFullFEM , d e l t a t)

31

CHAPTER 4. THE FINITE ELEMENT METHOD

4.2.7 Numerical results

Now we do some experiment. For understanding issue you can refer to the Section 4.2.6 above.
First, we will begin with checking the Courant–Friedrichs–Lewy condition and the stability from
Theorem 4.2.2. Finally we will presents an experimental error analysis of the numerical method.

Stability

To begin with the experiments, we check the stability of the method discussed in Theorem 4.2.2.
We recall the reader that the the Courant–Friedrichs–Lewy condition (4.8) is the following

∆t ≤ CCFLβ
−1h2.

First of all we wish determine the constant CCFL. We vary the constant while fixing the
other parameters and see whether the method is stable or not. The diffusion coefficient have
random values between α and β. Here is a table (Table 4.1) which recap the results of this
experiment.

Ccfl α β h stable

0.0089 1 1 0.1 Yes
0.009 1 1 0.1 No

Table 4.1: Influence of the constant CCFL on the stability.

Thus, we see that if CCFL ≤ 0.0089, the scheme is stable. Nevertheless it is hard to check if
this value will ensure the stability over infinite time. To be sure about the stability we can take
a bit less by multiplying the CCFL by a constant lower than 1. Now, let’s check the influence of
β and more especially the influence of the order of β. Because we theoretically found that the
order with respect to β is 1, we will first try we an order lower, here 1

2 . Again here is a recap
(Table 4.2).

Ccfl α β1/2 h stable

0.0089 1 1 0.1 Yes

0.0089 1
√

2 0.1 No

Table 4.2: Influence of the diffusion coefficient parameter β with order 1
2 on the stability.

We can see that the order 1
2 with respect to β is not sufficient to ensure the stability of the

method. Let’s try with order 1 (Table 4.3).

Ccfl α β h stable

0.0089 1 1 0.1 Yes
0.0089 1 5 0.1 Yes
0.0089 1 10 0.1 Yes
0.0089 1 20 0.1 Yes
0.0089 1 100 0.1 Yes
0.0089 1 1000 0.1 Yes

Table 4.3: Influence of the diffusion coefficient parameter β with order 1 on the stability.

32

CHAPTER 4. THE FINITE ELEMENT METHOD

Now, the scheme seems to stay stable for every β. This result is in accordance to the result
we found theoretically earlier. Finally, we wish verify if the Courant–Friedrichs–Lewy condition
is independent of α (Table 4.4).

Ccfl α β h stable

0.0089 1 1 0.1 Yes
0.0089 2 1 0.1 Yes
0.0089 10 1 0.1 Yes
0.0089 100 1 0.1 Yes
0.0089 500 1 0.1 Yes
0.0089 1000 1 0.1 Yes

Table 4.4: Influence of the diffusion coefficient parameter α on the stability.

The parameter α seems not to influence the stability. Then the Courant–Friedrichs –Lewy
condition found theoretically and the one found experimentally are the same. This is reassuring.

Pre-asymptotic effect

For the sake of clarity, we will do these experiments in one dimension. We want to try the finite
element method for a highly oscillating coefficient A. We choose A(x) = cos(290×x) + 1.01 and
f = 1. We have the solutions for different value of h on Figure 4.3.

(a) h = 75−1. (b) h = 150−1. (c) h = 300−1.

Figure 4.3: Illustration of the pre-asymptotic effect.

The first two pictures of Figure 4.3 are far from the exact solution, but the third one is not.
Hence, it indicates that the solution of the finite element method and the exact solution are
close if h . ε, where ε is the frequency of oscillations of A. Otherwise, the approximate solution
have no sens. This effect is known as the preasymptotic effect.

Error

We check the order of the convergence rate in space and in time. We do these two experiments
in one dimension. In both case, we take the diffusion coefficient A(x) = (2 + cos(2π

ε x))−1, for
0 < ε ≤ 1. Moreover, we have u0 = 0 and f = 1. We begin with the convergence rate in space,
Figure 4.4. We draw the relative L2-error ‖u− uh‖/‖u‖ depending on the mesh size h. We fix
∆t such that the Courant–Friedrichs–Lewy condition (4.8) is satisfies for every h.

33

CHAPTER 4. THE FINITE ELEMENT METHOD

(a) ε = 20. (b) ε = 2−1. (c) ε = 2−2.

(d) ε = 2−3. (e) ε = 2−4. (f) ε = 2−5.

Figure 4.4: L2-error with respect to the mesh size h.

On the picture (a), A have almost no variations. As a result the convergence rate is of order
2 with respect to the mesh size h. We only see that for large mesh size (ε . h), the order is
only 1. The is due to the preasymptotic effect. We have the same thing on the picture (b).
However from picture (c), the mesh size is too large compared to the variations of A. Indeed we
have ε . h. We can conclude that if h . ε the convergence rate of the finite element method
is of order 2 with respect to the mesh size h and if ε . h, the small variations of A are not
well-captured and, as a result, we only have an order of 1 with respect to h for the convergence
rate.

Now we study the convergence rate in time. We draw on Figure 4.4 the relative L2-error
‖u − uh‖/‖u‖ depending on the time step ∆t with ε = 2−4. We fix the mesh size h such that
the Courant–Friedrichs–Lewy condition (4.8) is satisfies for every ∆t.

Figure 4.5: L2-error with respect to the time step ∆t.

It seems that, under the Courant–Friedrichs–Lewy condition, the convergence rate of the
forward Euler method is of order 1 with respect to the time step ∆t. This aligns with our
theory.

34

CHAPTER 4. THE FINITE ELEMENT METHOD

4.3 Super-time Stepping acceleration

We have successfully computed a good approximation for our solution. However, the Courant–Friedrichs
–Lewy condition is an issue for us. Indeed, if we want a very accurate solution, we have to choose
a small h and consequently an even smaller ∆t. This is not possible if we want to study our
problem over a long period. That’s why we now introduce an other method : the Super-time
Stepping acceleration.

4.3.1 Formulation

The idea behind the super-time-stepping scheme is to solve N times an explicit Euler scheme.

As in [1], let us define a super-step ∆T consisting of N time-steps τ1, · · · , τN i.e. ∆T :=∑n
i=1 τi. We want to maximize ∆T and to ensure stability over the super-step ∆T instead

over each steps. That’s why the inner values have no approximating properties and should be
considered as intermediate calculations. We have the following problem

Problem 4.3.1. Knowing ūh|n, find ūh|n+1 ∈ Vh such that

(
ūh|n+1/N , vh

)
=
(
ūh|n, vh

)
+τ1

(
(f |n, vh)− a(ūh|n, vh)

)
, ∀vh ∈ Vh,(

ūh|n+2/N , vh
)

=
(
ūh|n+1/N , vh

)
+τ2

(
(f |n, vh)− a(ūh|n+1/N , vh)

)
, ∀vh ∈ Vh,

...(
ūh|n+1, vh

)
=
(
ūh|n+(N−1)/N , vh

)
+τN

(
(f |n, vh)− a(ūh|n+(N−1)/N , vh)

)
, ∀vh ∈ Vh,

(4.10)

and such that ūh|0 = Ph ◦ u0.

4.3.2 Stability

As we use many forward Euler scheme, the Super-time Stepping is not unconditionally stable.
However, unlike the forward Euler scheme, we want to ensure the stability over a super-step ∆T
instead of over a single step ∆t. It has been proved in [1] that in order to have the stability of
the Super-time Stepping, we must have the following inner steps

τi = ∆texpl

(
(ν − 1) cos

(2i− 1

N

π

2

)
+ 1 + ν

)−1
, ∀i ∈ {1, · · · , N},

where 0 < ν < µmin/µmax, (µi)i are the eigen values of M−1S.

4.3.3 Error of the completely discretized method

Theorem 4.3.1 (Error due to the Super-time Stepping method). The Super-time stepping
method is of order one with respect to ∆T .

Proof. See [1].

35

CHAPTER 4. THE FINITE ELEMENT METHOD

The theorem above combined with the error due to the semi-discretized finite element method
gives us the error of the completely discretized method below.

Theorem 4.3.2 (Error of the completely discretized method). Let u be the solution of (2.2)
and ūh be the solution of (4.10) Then,

‖u|n − ūh|n‖ ≤ C
(
β, α−1, ‖f(t)‖,

)(
‖u0 − Ph ◦ u0‖+ h+ ∆T

)
.

Proof. Use the triangle inequality, Theorem 4.3.1 and 4.1.3.

4.3.4 Implementation in Python

Before solving the super-time stepping system (4.10), we have to compute the τi. For it we use

1 problemFEM . in i tSuperStep (N, nu)

And then to solve the system (4.10), we invoke

1 problemFEM . so lveSuperStep (xFullFEM , N, nu)

4.3.5 Numerical results

Like with the forward Euler method, we do experiments to confirm the theory.

Computation of the inner steps

We verify the influence of N and ν on the inner steps τi.

(a) Comparison between ∆texpl and different
super-step ∆T .

(b) Value of ∆T when ν tends to 0.

Figure 4.6: Evolution of the super-step ∆T .

On these graphics (Figure 4.6), we drew in color the following value :

n∑
i=1

τi(N, ν), ∀n ∈ {1, . . . , N}.

36

CHAPTER 4. THE FINITE ELEMENT METHOD

On the first one, we fix N to ten then we vary ν. For large ν, (f.e. ν equal to one), we
see that ∆T < ∆texpl. In that case, the Super-Time Stepping acceleration is less efficient than
the forward Euler. However, for a sufficiently small ν, the Super-Time Stepping acceleration is
quicker than the forward Euler. Even more, if ν → 0, we see that ∆T ≈ N2∆texpl. This result
is confirmed theoretically in [1] and the figure (b) :

lim
ν→0

∆T = N2∆texpl.

Error

Again, we do the experiments in the one dimensional case. We fix N = 20 and we vary ν between
0.001 and 2. We remind the reader that the more ν is close to 0, the more the super-time step
∆T is high. We draw the relative error on Figure 4.7.

Figure 4.7: L2-error with respect to the super time step ∆T .

The relative error globally follows the ∆T line. Thus the convergence rate of the super-
time stepping is of order 1 with respect to ∆T . The variations can be explained due to the
implementation of this experiment. Indeed we fix the same end time T for every computation.
However, it happens that this T in not divisible by ∆T . As a result, some computation stop a
bit earlier or a bit later than the fixed end time T . Hence, we compare the exact solution with
the computed solutions at different time around T .

Solution

To finish this chapter, here is some drawing, in two dimension, of ūh|n for two kind of diffusion
coefficient. The mesh size h is h = 20−1. We take u0 and f like in Figure 4.8.

37

CHAPTER 4. THE FINITE ELEMENT METHOD

(a) The initial condition u0. (b) The forcing term f .

Figure 4.8: Experiment data.

On Figure 4.9, we split the diffusion coefficient A in two parts. On the top we have a non-
conductive coefficient (Atop = 0.01) and at the bottom a very-conductive coefficient (Abottom =
200). On the top part i.e. the non-conductive part, the heat is very localized and high. On
the bottom part i.e. the conductive part, the heat is diffuse and lower than the one in the
non-conductive part. This is because at the bottom, the heat transfer is easier than on the top
part. As a result, the heat is distributed and is easily absorbed by the boundaries (due to the
boundary condition).

(a) Diffusion coefficient A. (b) Solution ūh|n. (c) Solution ūh|n.

Figure 4.9: Computation with a binary diffusion coefficient.

38

Chapter 5

The localized orthogonal
decomposition

Previously, we managed to compute an approximate solution of the parabolic problem. We saw
that the error on this approximation is of order one with respect to the mesh size h. Moreover,
we have a pre-asymptotic effect. To avoid it, we have to choose h lower than the variation of the
diffusion coefficient A. This condition is not acceptable for a A with fast variations. To solve
this problem, we will use one of the multiscale methods.

First, we introduce the interpolation operator that we will use for the method. Then, we
present the orthogonal decomposition. After that, we localize this decomposition in order to
achieve the localized orthogonal decomposition. To finish, like for the Chapter 4 we use, in a
first time, the forward Euler method, then move on the Super-time Stepping.

In this chapter, we consider the piecewise affine finite element spaces Vh and VH , h ≤ H.
Moreover, we consider that τh is a refinement of τH . As we saw in Lemma 3.2.1, we have
VH ⊂ Vh. Finally, Nh (resp. NH) will denote the interior nodes of Vh (resp. VH) and Φx (resp.
ϕx) the corresponding hat functions. Sometimes, τh is called fine mesh and τH is called coarse
mesh.

5.1 Orthogonal decomposition

The idea behind the localized orthogonal decomposition is to split the space of solution in two.
The first one will correspond to the interpolation of the solution with a specific interpolation
operator. The aim of this first space is to describe the coarse variations of the solution. The
second one correspond the fine scale variations of the solution. Then, the fine scale space will be
orthogonalized with respect to a specific scalar product in order to have convenient properties.

5.1.1 The interpolation operator

First, we present the interpolation operator that we will use for the coarse variations space.

39

CHAPTER 5. THE LOCALIZED ORTHOGONAL DECOMPOSITION

Definition 5.1.1 (Local L2-orthogonal projection). Let Vξ be piecewise affine finite element
spaces, 0 < ξ. Then Πξ|T : L2(T) → P1(τξ) is the L2(T)-orthogonal projection onto affine
functions on the element T , i.e.,∫

T
ΠH |ξ(v)w dx =

∫
T
vw dx

for all w in P1(τξ).

Note 3. First, it is important to notice that the result of Πξ may be discontinuous (see Figure
5.1). In addition, if v is already an affine function i.e. is in P1(τξ), we have Πξ(v) = v.

(a) A L2 function v.. (b) ΠH ◦ v in red.

Figure 5.1: Illustration of the L2(T)-orthogonal projection onto affine functions.

As we saw in the previous note, the result of Πξ is possibly discontinuous. For more con-
venience, we would prefer a continuous interpolation operator. To ensure the continuity of the
interpolation operator, we define the averaging operator.

Definition 5.1.2 (Averaging operator). Let Vξ be piecewise affine finite element spaces,
0 < ξ. Let Eξ : P1(τξ) → Vξ be the averaging operator defined by : for any v ∈ P1(τξ) and
for any z an interior node of τξ,

(Eξv)(z) :=
∣∣∣{K ∈ τξ / z ∈ K}∣∣∣−1 ∑

T∈τξ, z∈T
v|T (z)

This averaging operator have the following property.

Property 5.1.1. If vξ ∈ Vξ, then Eξvξ = vξ.

Proof. Let vξ ∈ Vξ and let z be an interior node of τξ.

(Eξvξ)(z) =
∣∣∣{K ∈ τξ / z ∈ K}∣∣∣−1 ∑

T∈τξ, z∈T
vH |T (z)

As vξ is in Vξ, vξ is continuous. Then for all T ∈ τξ with z ∈ T , vξ|T (z) = vξ(z). Thus

(Eξvξ)(z) =
∣∣∣{K ∈ τξ / z ∈ K}∣∣∣−1∣∣∣{T ∈ τξ / z ∈ T}∣∣∣vξ(z)

= vξ(z).

40

CHAPTER 5. THE LOCALIZED ORTHOGONAL DECOMPOSITION

We can now define the interpolation operator that we will use to create the coarse scale
variations space.

Definition 5.1.3 (Quasi-Interpolation operator). Let Vξ be piecewise affine finite element
spaces, 0 < ξ. We define the quasi-interpolation operator Iξ : L2(Ω)→ Vξ by

Iξ = Eξ ◦Πξ.

(a) A L2 function v. (b) ΠH ◦ v in red. (c) IHv = EH◦ΠH◦v in blue.

Figure 5.2: Illustration of the quasi-interpolation operator.

On the left picture (a) on Figure 5.2, we consider a L2-function f and two elements of the
coarse mesh τH : T and K. We apply the local L2-orthogonal projection ΠH to f to obtain
the red function on figure (b). We see that the projection ΠH ◦ f is piecewise affine and that it
coincide on the nodes of the coarse mesh with the original function f . As previously mentioned,
the result of the local L2-orthogonal projection is not always continuous. And it is not the
case for this example. That is why we apply the averaging operator, to make the result of ΠH

continuous (see figure (c), the blue function). We simply average the value of ΠH ◦ f on each
nodes. This two operators together gives us our quasi-interpolation operator.

Property 5.1.2. Let Vξ be piecewise affine finite element spaces, 0 < ξ. Then the quasi-
interpolation operator Iξ is a projection i.e. if vξ ∈ Vξ, then Iξvξ = vξ.

Proof. Use the fact that Πξ is a projection and the property 5.1.1.

To end this section, we present a useful property of the quasi-interpolation operator to esti-
mate the error.

Property 5.1.3. Let Vξ be piecewise affine finite element spaces, 0 < ξ. For any v in
H1(Ω), we have

(a) ‖∇Iξv‖+ ξ−1‖v − Iξv‖ ≤ CI‖∇v‖,

(b) ‖v − Iξv‖ ≤ Cξ‖v‖H1
0 (Ω).

Proof. Let v be in H1(Ω). We start with the following result detailed in [10], lemma 4.1 (b) :
for any T ∈ τξ,

‖∇Iξv‖L2(T) + ξ−1‖v − Iξv‖L2(T) ≤ CI‖∇v‖L2(T),

41

CHAPTER 5. THE LOCALIZED ORTHOGONAL DECOMPOSITION

Then since the term ‖∇Iξv‖ ≥ 0 and by multiplying by ξ, it follows

‖v − Iξv‖L2(T) ≤ CIξ‖∇v‖L2(T),

Now we want an estimation in the norm of L2(Ω) instead of L2(T).

‖v − Iξv‖2 =
∑
T∈τξ

‖v − Iξv‖2L2(T) ≤ C
2
I ξ

2
∑
T∈τξ

‖∇v‖2L2(T) = C2
I ξ

2‖v‖2H1
0 (Ω).

We have the result.

5.1.2 Definition of the multiscale space

Now we are able to do the orthogonal decomposition. We begin by giving the definition of the
non-orthogonalized fine scale space.

Definition 5.1.4 (Fine scale space). We define the fine scale space by

V f := ker(IH) = {v ∈ Vh | IHv = 0}

As said before, this space gives us the fine scale variations of the solution. Now we can split
the finite element space.

Property 5.1.4. We have the following decomposition of VH :

Vh = VH ⊕ V f

Proof. • Show that Vh = VH ⊕ V f :

We need to show that VH ∩ V f = {0} and that Vh = VH + V f .

Let v ∈ VH ∩ V f . We have v ∈ V f , so

IHv = 0

In addition, v is in VH , so

IHv = v

Thus

v = 0

Now let vh ∈ Vh. We have

vh = IHvh︸ ︷︷ ︸
∈VH

+ (1− IH)vh︸ ︷︷ ︸
∈Vf

42

CHAPTER 5. THE LOCALIZED ORTHOGONAL DECOMPOSITION

For more clarity, here is a picture to illustrate this decomposition.

(a) (b)

Figure 5.3: Illustration of the non-orthogonalized decomposition.

On the left picture (a) of Figure 5.2, we drew in blue the original function with fine scale
variations which lives in Vh. We divide the function into two different ones. The blue one rep-
resents the coarse scale variations of the original function and belongs to VH . The orange one
represents the fine scale variations of the original function and belongs to V f.

We managed to decompose the space Vh into two spaces, one for the macro-variations and
one for the micro-variations. The orthogonal decomposition is based on the orthogonalization of
the decomposition found in the property above with respect the the scalar product a. In order
to establish the new decomposition we need first to introduce the corrector associated to our
problem. This corrector will allow us to orthogonalize the fine scale space V f.

Definition 5.1.5 (Corrector). We define Rf : Vh → V f as the a-orthogonal projection from
Vh into V f i.e.

a(Rfv, w) = a(v, w), ∀v ∈ Vh, ∀w ∈ V f .

With the corrector we can define the space that will be used later for the orthogonal decom-
position. This space is called the multiscale space.

Definition 5.1.6 (Multiscale space). We define the multiscale space by

V ms := VH −RfVH .

This space will encode the “coarse information”of the solution.

Property 5.1.5. We have the following decomposition of Vh :

Vh = V ms ⊕ V f .

Moreover, V ms and V f are a-orthogonal.

Proof. • Show that Vh = V ms ⊕ V f :

43

CHAPTER 5. THE LOCALIZED ORTHOGONAL DECOMPOSITION

We need to show that V ms ∩ V f = {0} and that Vh = V ms + V f . Let v ∈ V ms ∩ V f . Then
there exists vH ∈ VH , v = vH −RfvH .

IHv = IH(vH −RfvH)

= IHvH︸ ︷︷ ︸
=vH

−IHRfvH

= vH − IHRfvH .

However RfvH is in V f i.e. IHRfvH = 0. Then

IHv = vH

Moreover v is in V f i.e. IHv = 0. Thus vH = 0 and so

v = 0

.
Now let vh ∈ Vh. We have

vh = IHvh −RfIHvh︸ ︷︷ ︸
∈V ms

+(1− IH)vh +RfIHvh

We have that (1− IH)vh +RfIHvh is in V f . Indeed

IH((1− IH)vh +RfIHvh) = 0 + IHRfIHvh
= IH RfIHvh︸ ︷︷ ︸

∈V f

= 0.

Then

vh = IHvh −RfIHvh︸ ︷︷ ︸
∈V ms

+ (1− IH)vh +RfIHvh︸ ︷︷ ︸
∈V f

.

• Show that V ms and V f are a-orthogonal:

Let vms ∈ V ms and vf ∈ V f .

a(vms, vf) = a(vH −RfvH , vf)

= a(vH , v
f)− a(RfvH , v

f)︸ ︷︷ ︸
:=a(vH ,vf)

= 0.

We succeeded in splitting the fine mesh space into two spaces with the property we wanted :
the a-orthogonality. Since we have this a-orthogonality it is important to notice that the space
V ms will depend on the domain Ω but also on the coefficient A, unlike the finite element space
Vh which only depends on the domain. Now we can reformulate the problem.

44

CHAPTER 5. THE LOCALIZED ORTHOGONAL DECOMPOSITION

5.1.3 Formulation

We have the following formulation of our problem

Problem 5.1.1. For all t ∈ (0, T], find ums(·, t) ∈ V ms such that{ (
∂ums

∂t , v
)

+ a(ums, v) = (f, v), ∀v ∈ V ms(Ω),
ums(·, 0) = Pms ◦ u0 .

(5.1)

Where Pms : H1
0 (Ω)→ V ms is a projection from H1

0 (Ω) into V ms.

5.1.4 Find a base for the multiscale space

We created our multiscale space. But in practice we need to compute this space. As he have
finite dimension, we can compute a finite basis for our space. In this section, we state the
relation satisfied by the basis functions. Let {Λx}x∈NH be a basis of V ms. Let us define φx as
the projection Rf of the corresponding ϕx i.e.

φx := Rfϕx, ∀x ∈ NH .

We have the following (global) corrector problem

Problem 5.1.2 (Global corrector problem). For all x ∈ NH , find φx ∈ V f such that

a(φx, w) = a(ϕx, w), ∀w ∈ V f .

and the basis of V ms

{Λx = ϕx − φx / x ∈ NH}.

Figure 5.4: Basis functions of the non-localized multiscale space V ms.

The basis function of V ms correspond to the classical basis function of the finite element
space ϕx modified by the corrector φx. The ϕx encodes the coarse variations of the solution
and the φx encodes the fine variations. That is why the space V ms is called multiscale space
: it includes both coarse and fine information. The second thing to notice is that the global

45

CHAPTER 5. THE LOCALIZED ORTHOGONAL DECOMPOSITION

corrector problem belongs to the fine scale space V f. Thus the corrector are very expensive to
compute. Furthermore, they may have global support. At last, Figure 5.4 gives the Λ for a
periodic coefficient A. The Λ are computed in [10] for the one-dimensional case.

5.1.5 Stability

As for the finite element case, we show that the orthogonalized decomposition method is stable.

Theorem 5.1.1 (Stability). Let ums be the solution of (5.1). For all t ∈ (0, T], we have
the following results

‖ums(t)‖ ≤ C
(
‖Pms ◦ u0‖+

∫ t

0
‖f(s)‖ ds

)
, (5.2)

∥∥∥∥∂ums

∂t
(t)

∥∥∥∥ ≤ C(‖Pms ◦ u0‖+ ‖f(t)‖+

∫ t

0
‖f(s)‖ ds

)
, (5.3)

‖ums(t)‖a ≤ C ′
(
‖Pms ◦ u0‖+ ‖f(t)‖+

∫ t

0
‖f(s)‖ ds

)
. (5.4)

Proof. We proceed in the same way as for the stability of u, Theorem 2.2.2.

5.1.6 Error estimate

Like for the finite element method, we want to estimate the error of the method.

Lemma 5.1.1. Let us define Ems : H1
0 (Ω) → V ms to be the elliptic projection from H1

0 (Ω)
into V ms i.e. for any v ∈ H1

0 (Ω),

a
(
Emsv, wms

)
= a

(
v, wms

)
, ∀wms ∈ V ms.

Then, for any v in H1
0 (Ω), we have

‖v − Emsv‖ ≤ C(α, β)H‖v‖a.

Proof. We consider the following auxiliary problem : find z in H1
0 (Ω) such that

a(z, w) = (v − Emsv, w), ∀w ∈ H1
0 (Ω). (5.5)

Remplacing w by v − Emsv leads to

‖v − Emsv‖2 = a(z, v − Emsv)

Since Emsz belongs to V ms, we have that a(Emsz, v − Emsv) = 0 by definition of Ems. Then

‖v − Emsv‖2 = a(z − Emsz, v − Emsv)

≤ ‖z − Emsz‖a‖v − Emsv‖a.

46

CHAPTER 5. THE LOCALIZED ORTHOGONAL DECOMPOSITION

‖z − Emsz‖a is the a-norm of the error due to the orthogonal decomposition approximation
of the elliptic problem (5.5). This error estimate has been computed in [8], Lemma 3.1. Hence

‖z − Emsz‖a ≤ C(α, β)H‖v − Emsv‖.

Then, ‖v − Emsv‖ ≤ C(α, β)H‖v − Emsv‖a. Finally, we have

‖v − Emsv‖2a = a(v − Emsv, v − Emsv)

= a(v − Emsv, v)− a(v − Emsv, Emsv)

Since Emsv lives in V ms we have a(v − Emsv, Emsv) = 0. Thus

‖v − Emsv‖2a = a(v − Emsv, v)

≤ ‖v − Emsv‖a‖v‖a.

It yields ‖v − Emsv‖ ≤ C(α, β)H‖v‖a. We have the result.

Theorem 5.1.2. Let u be the solution of (2.2) and ums be the solution of (5.1). Then for
all t ∈ (0, T], we have

‖u(t)− ums(t)‖ ≤ C
(
α, β

)(
‖u0 − Pms ◦ u0‖+H‖u(t)‖a

)
.

Proof. The main idea of this proof is the same as for the finite element case. Let us define
Ems : H1

0 (Ω) → V ms as in Lemma 5.1.1. Thus if v ∈ H1
0 (Ω) is the solution of the following

elliptic problem
a(v, w) = (f, w), ∀w ∈ H1

0 (Ω)

then Emsv ∈ Vh is the solution of

a(Emsv, w) = (f, w), ∀w ∈ V ms.

We fix t ∈ [0, T].

‖u(t)− ums(t)‖ ≤ ‖u(t)− Ems[u(t)]︸ ︷︷ ︸
=:ε1(t)

‖+ ‖ Ems[u(t)]− uh(t)︸ ︷︷ ︸
=:ε2(t)

‖.

• ε1 : By using Lemma 5.1.1, we have

‖ε1(t)‖ = ‖u(t)− Ems[u(t)]‖ ≤ C(α, β)H‖u(t)‖a.

• ε2 : We put ε2(t) instead of ums(t) in Problem 5.1

(
∂ε2(t)

∂t
, v

)
+ a(ε2(t), v) =

(
∂Ems[u(t)]

∂t
, v

)
+ a(Ems[u(t)], v)−

((∂ums(t)

∂t
, v) + a(ums(t), v

)
︸ ︷︷ ︸

=(f(t),v)

)
,

47

CHAPTER 5. THE LOCALIZED ORTHOGONAL DECOMPOSITION

since ums solve Problem 5.1. Furthermore Ems[u(t)] satisfies the Galerkin orthogonality i.e.
a(Ems[u(t)], w) = a(u(t), w) for any w ∈ V ms

(
∂ε2(t)

∂t
, v

)
+ a(ε2(t), v) =

(
∂Ems[u(t)]

∂t
, v

)
+ a(u(t), v)− (f(t), v)

=

(
∂Ems[u(t)]

∂t
, v

)
−
(
∂u(t)

∂t
, v

)
= −

(
∂ε1(t)

∂t
, v

)
Thus ε2 solve our parabolic problem 5.1 for f = −∂ε1

∂t and u0 = ε2(0). We can apply the
stability Theorem 5.1.1 and get the estimate

‖ε2(t)‖ ≤ C
(
‖ε2(0)‖+

∫ t

0

∥∥∥∥∂ε1∂t (s)

∥∥∥∥ ds
)

= C
(
‖ε2(0)‖+ ‖ε1(t)‖ − ‖ε1(0)‖

)
.

Here

‖ε2(0)‖ = ‖Emsu0 − Pms ◦ u0‖ ≤ ‖Emsu0 − u0‖+ ‖u0 − Pms ◦ u0‖ = ‖ε1(0)‖+ ‖u0 − Pms ◦ u0‖.

Combining with the estimation of ‖ε1(t)‖

‖ε2(t)‖ ≤ C
(
‖ε2(0)‖+ ‖ε1(t)‖ − ‖ε1(0)‖

)
≤ C

(
‖ε1(0)‖+ ‖u0 − Pms ◦ u0‖+ ‖ε1(t)‖ − ‖ε1(0)‖

)
≤ C

(
‖u0 − Pms ◦ u0‖+ ‖ε1(t)‖

)
≤ C

(
α, β

)(
‖u0 − Pms ◦ u0‖+H‖u(t)‖a

)
.

Note 4. Again, if you use the elliptic projection Ems instead of Pms, we get

‖u(t)− ums(t)‖ ≤ C
(
α, β

)
H
(
‖u0‖a + ‖u(t)‖a

)
.

5.2 Localization

In the last section we split our space of solution into two a-orthogonal spaces. This is the
orthogonal decomposition part of the method. However, to compute the basis of the multi-scale
space V ms, we need to solve the global corrector problems 5.1.2, which are posed in the fine
scale space V f. As a result they are computationally expensive to solve. Also, the correctors φx
generally have global support. Nevertheless, it is proved in [10] that the φx decays exponentially
fast away from x. This last property motivates a localization of the corrector problems. The
purpose of the next steps is to truncate every basis functions of the space V ms into a smaller
patches of the coarse mesh. Doing this gives us a new multi-scale space, a localized one, and as
a result a new approximation of the solution.

48

CHAPTER 5. THE LOCALIZED ORTHOGONAL DECOMPOSITION

5.2.1 Definitions

In order to correctly define the localized multi-scale space, we need to introduce a few notions
to define the localized version of the corrector operator Rf from the last section.

Definition 5.2.1. For all T ∈ τH and for k ∈ N, we define

V f
(
ωk(T)

)
:= {w ∈ V f | Supp(w) ⊂ ωk(T)}.

Definition 5.2.2. For all T ∈ τH , we define the projection RfT : Vh → V f by∫
Ω

(A∇RfTu) · ∇v dx =

∫
T

(A∇u) · ∇v dx, ∀u ∈ Vh,∀v ∈ V f .

Note 5. Note that Rf =
∑

T∈τH R
f
T . Indeed, let u in Vh.

a
(
Rfu−

∑
T∈τH

RfTu, v
)

= a(Rfu, v)−
∑
T∈τH

a(RfTu, v)

= a(u, v)−
∑
T∈τH

∫
T

(A∇u) · ∇v dx︸ ︷︷ ︸
=a(u,v)

= 0, ∀v ∈ Vh

Now we localize the operator RfT .

Definition 5.2.3. For all T ∈ τH and for k ∈ N, we define the projection RfT,k : Vh →
V f
(
ωk(T)

)
by∫

ωk(T)
(A∇RfT,ku) · ∇v dx =

∫
T

(A∇u) · ∇v dx, ∀u ∈ Vh, ∀v ∈ V f
(
ωk(T)

)
.

Now we are able to define our new multi scale space.

Definition 5.2.4 (Localized multiscale space). For k ∈ N, we define V ms
k to be the localized

multiscale space by
V ms
k := VH −RfkVH ,

where Rfk :=
∑

T∈τH R
f
T,k.

Note 6. We have the a-orthogonality between V ms
k and V f(ωk(Ω)). Indeed, let v ∈ V ms

k and
w ∈ V f(ωk(Ω)). By definition of V ms

k , there exists vH ∈ VH such that v = vH −Rf
kvH . Then

a(v, w) = a(vH , w)− a(Rf
kvH , w)

= a(vH , w)−
∑
T

a(Rf
T,kvH , w)

= a(vH , w)−
∑
T

∫
Ω

(A∇Rf
T,kvH) · w dx.

49

CHAPTER 5. THE LOCALIZED ORTHOGONAL DECOMPOSITION

Since Suppw ⊂ ωk(Ω), we have

a(v, w) = a(vH , w)−
∑
T

∫
ωk(Ω)

(A∇Rf
T,kvH) · w dx = a(vH , w)−

∑
T

∫
T

(A∇vH) · w dx

= a(vH , w)− a(vH , w)

= 0.

5.2.2 Formulation

With this localized multi-scale space, we obtain the final localized orthogonal decomposition
method formulation

Problem 5.2.1. For a given k and for all t ∈ (0, T], find ums
k (·, t) ∈ V ms

k such that{ (∂ums
k
∂t , v

)
+ a(ums

k , v) = (f, v), ∀v ∈ V ms
k (Ω),

ums
k (·, 0) = Pms

k ◦ u0 .
(5.6)

Where Pms
k : H1

0 (Ω)→ V ms
k is a projection from H1

0 (Ω) into V ms
k .

5.2.3 Find a basis for the localized multiscale space

Let {Λk,x}x∈NH be a basis of V ms
k . Let us define φk,x as the projection Rfk of the corresponding

ϕx i.e.

φk,x := Rfkϕx =
∑
T∈τH

RfT,kϕx, ∀x ∈ NH .

Note that {φk,x}x∈NH is the localized version of {φx}x∈NH . We have the following localized
cell problem

Problem 5.2.2 (Localized cell problem). For all x ∈ NH , find φx,T,k ∈ V f
(
ωk(T)

)
such

that ∫
ωk(T)

(A∇φx,T,k) · ∇v dx =

∫
T

(A∇u) · ∇v dx,

and the basis of V ms
k

{Λk,x = ϕx − φk,x / x ∈ NH},

with φk,x :=
∑

T∈τH φx,T,k.

50

CHAPTER 5. THE LOCALIZED ORTHOGONAL DECOMPOSITION

(a) k = 3. (b) k = 2.

(c) k = 1. (d) k = 0.

Figure 5.5: Influence of the patches size k on the basis functions of the localized multi-scale
space V ms.

The basis functions of V ms
k have essentially the same shape as the ones of V ms for a large

k. Indeed, we truncate the basis functions ϕx outside a large patch, and so far away from x.
As these functions decays exponentially fast away from x, the localization have very few effect
on the basis functions (see Figure 5.5 (a) and (b)). It leads to a low error between the solution
of the orthogonal decomposition method and the solution of the localized orthogonal method.
However, for a small k, the localization will affect the basis functions. In Figure 5.5 (c) and
(d), we clearly see this truncation outside the patches of x. Therefore we expect a high error
between the solution of the orthogonal decomposition method and the solution of the localized
orthogonal decomposition method.

5.2.4 Error estimate

Now, we have to estimate the error due to the localization.

Theorem 5.2.1 (Error due to the localization). Let ums be the solution of (5.1) and let
ums
k be the solution of (5.6). Then there exists a constant 0 < µ < 1 that depends on the

contrast β/α such that

‖ums(t)− ums
k (t)‖ . kd/2µk + kdµ2kH−1.

Hence, the choice k ≈ logH recovers the convergence rate of the non localized method.

51

CHAPTER 5. THE LOCALIZED ORTHOGONAL DECOMPOSITION

Proof. We proceed as in [7]. First, we split the error in two parts.

‖ums(t)− ums
k (t)‖ = ‖(1−Rf)v1

H − (1−Rf
k)v

2
h‖

= ‖(1−Rf)v1
H − (1−Rf +Rf −Rf

k)v
2
h‖

≤ ‖(1−Rf)(v1
H − v2

H)‖︸ ︷︷ ︸
=:ε1(t)

+ ‖(Rf −Rf
k)v

2
H‖︸ ︷︷ ︸

=:ε2(t)

.

• ε1(t) : Let wH be in VH . We have

(
∂

∂t

(
(1−Rf)(v1

H − v2
H)
)
, (1−Rf)wH

)
+ a
(
(1−Rf)(v1

H − v2
H), (1−Rf)wH

)
=

(
∂

∂t

(
(1−Rf)v1

H

)
, (1−Rf)wH

)
+ a
(
(1−Rf)v1

H , (1−Rf)wH
)
−
(
∂

∂t

(
(1−Rf)v2

H

)
, (1−Rf)wH

)
− a
(
(1−Rf)v2

H , (1−Rf)wH
)

Since (1−Rf)wH is in V ms and since (1−Rf)v1
H satisfies (5.1), we have

=
(
f, (1−Rf)wH

)
−
(
∂

∂t

(
(1−Rf)v2

H

)
, (1−Rf)wH

)
− a
(
(1−Rf)v2

H , (1−Rf)wH
)

=
(
f, (1−Rf)wH

)
−
(
∂

∂t

(
(1−Rf

k)v
2
H

)
, (1−Rf)wH

)
− a
(
(1−Rf

k)v
2
H , (1−Rf)wH

)
−
(
∂

∂t

(
(Rf

k −Rf)v2
H

)
, (1−Rf)wH

)
− a
(
(Rf

k −Rf)v2
H , (1−Rf)wH

)

=
(
f, (1−Rf)wH

)
−
(
∂

∂t

(
(1−Rf

k)v
2
H

)
, (1−Rf

k)wH

)
−
(
∂

∂t

(
(1−Rf

k)v
2
H

)
, (Rf

k −Rf)wH

)
− a
(
(1−Rf

k)v
2
H , (1−Rf

k)wH
)

− a
(
(1−Rf

k)v
2
H , (R

f
k −Rf)wH

)
−
(
∂

∂t

(
(Rf

k −Rf)v2
H

)
, (1−Rf)wH

)
− a
(
(Rf

k −Rf)v2
H , (1−Rf)wH

)
Since (1−Rf

k)w
2
H is in V ms

k and since (1−Rf
k)v

2
H satisfies (5.6), we have

=
(
−f, (Rf −Rf

k)wH

)
−
(
∂

∂t

(
(1−Rf

k)v
2
H

)
, (Rf

k −Rf)wH

)
−
(
∂

∂t

(
(Rf

k −Rf)v2
H

)
, (1−Rf)wH

)
− a
(
(1−Rf

k)v
2
H , (R

f
k −Rf)wH

)
− a
(
(Rf

k −Rf)v2
H , (1−Rf)wH

)
Moreover,

52

CHAPTER 5. THE LOCALIZED ORTHOGONAL DECOMPOSITION

a
(
(1−Rf

k)v
2
H , (R

f −Rf
k)wH

)
+ a
(
(Rf −Rf

k)v
2
H , (1−Rf)wH

)
= a

(
(1−Rf

k)v
2
H , (1−Rf

k)wH
)
− a
(
(1−Rf

k)v
2
H , (1−Rf)wH

)
+ a
(
(1−Rf

k)v
2
H , (1−Rf)wH

)
− a
(
(1−Rf)v2

H , (1−Rf)wH
)

= a
(
(1−Rf

k)v
2
H , (1−Rf

k)wH
)
− a
(
(1−Rf)v2

H , (1−Rf)wH
)

= a
(
v2
H , wH

)
− a
(
v2
H , R

f
kwH

)
− a
(
Rf
kv

2
H , wH

)
+ a
(
Rf
kv

2
H , R

f
kwH

)
− a
(
v2
H , wH

)
+ a
(
v2
H , R

fwH
)

+ a
(
Rfv2

H , wH
)
− a
(
Rfv2

H , R
fwH

)
Since a

(
v2
H , R

fwH
)

= a
(
Rfv2

H , R
fwH

)
and a

(
v2
H , R

f
kwH

)
= a

(
Rf
kv

2
H , R

f
kwH

)
, we have

a
(
(1−Rf

k)v
2
H , (R

f −Rf
k)wH

)
+ a
(
(Rf −Rf

k)v
2
H , (1−Rf)wH

)
= a

(
(Rf −Rf

k)v
2
H , wH

)
.

Lastly, since Rf
kv

2
H ∈ V f ⊂ V f, we have

a
(
(Rf −Rf

k)v
2
H , wH

)
= a

(
(Rf −Rf

k)v
2
H , R

fwH
)
.

Then, using that a
(
(Rf −Rf

k)v
2
H , R

f
kwH

)
= 0, it follows

a
(
(Rf −Rf

k)v
2
H , wH

)
= a

(
(Rf −Rf

k)v
2
H , (R

f −Rf
k)wH

)
.

We set F ((1−Rf)wH) :=
(
−f, (Rf −Rf

k)wH
)

+
(
∂
∂t

(
(1−Rf

k)v
2
H

)
, (Rf −Rf

k)wH
)

+
(
∂
∂t

(
(Rf −Rf

k)v
2
H

)
, (1−Rf)wH

)
+ a

(
(Rf − Rf

k)v
2
H , (R

f − Rf
k)wH

)
. Thus (1 − Rf)(v1

H − v2
H)

satisfies (5.1) with F at the right hand side.

‖F ((1−Rf)wH)‖
‖(1−Rf)wH‖

≤ ‖f‖
‖(Rf −Rf

k)wH‖
‖(1−Rf)wH‖

+

∥∥∥∥ ∂∂t((1−Rf
k)v

2
H

)∥∥∥∥ ‖(Rf −Rf
k)wH‖

‖(1−Rf)wH‖

+

∥∥∥∥ ∂∂t((Rf −Rf
k)v

2
H

)∥∥∥∥+ ‖(Rf −Rf
k)v

2
H‖a
‖(Rf −Rf

k)wH‖a
‖(1−Rf)wH‖

.

We use the following inequality of which the proof can be found in [6] and the inverse
inequality

‖(Rf −Rf
k)wH‖a ≤ Ckd/2µk‖wH‖a.

This inequality combining with properties of IH (Property 5.1.3 (a)) and with the inverse
inequality leads to

‖(Rf −Rf
k)wH‖ ≤ CCIkd/2µkH‖wH‖a ≤ CCICinvk

d/2µk‖wH‖.
Thus and since ‖wH‖ = ‖IH((1−Rf)wH)‖ ≤ CI‖(1−Rf)wH‖, we have

‖F ((1−Rf)wH)‖
‖(1−Rf)wH‖

≤ Ckd/2µk
(
‖f‖+

∥∥∥∥ ∂∂t((1−Rf
k)v

2
H

)∥∥∥∥+

∥∥∥∥ ∂∂tv2
H

∥∥∥∥+ Ckd/2µkH−1‖v2
H‖a

)
.

53

CHAPTER 5. THE LOCALIZED ORTHOGONAL DECOMPOSITION

It implies that,

sup
wms∈V ms

‖F (wms)‖
‖wms‖

. kd/2µk + kdµ2kH−1,

and also F is in L2(Ω). We can apply the stability theorem on (1 − Rf)(v1
H − v2

H) and it
leads to ‖(1−Rf)(v1

H − v2
H)‖ . kd/2µk + kdµ2kH−1.

• ε2(t) : We use again the following inequality of which the proof can be found in [6]

‖(Rf −Rf
k)v

2
H‖ ≤ α−1/2‖(Rf −Rf

k)v
2
H‖a ≤ C(α)kd/2µk‖v2

H‖a.

5.3 Explicit Euler scheme approximation

We apply the forward Euler method to (5.6).

Problem 5.3.1. Knowing ¯ums
k |

n, find ¯ums
k |

n+1 ∈ V ms
k such that{ (

¯ums
k |

n+1, v
)

=
(

¯ums
k |

n, v
)

+ ∆t
(

(f |n, v)− a(¯ums
k |

n, v)
)
, ∀v ∈ V ms

k ,

¯ums
k |

0 = Pms
k ◦ u0 .

(5.7)

5.3.1 Error of the full method

Theorem 5.3.1. Let u be the solution of (2.2) and let ums
k be the solution of (5.7) such

that ums
k is C2 in time. Then there exists a constant 0 < µ < 1 that depends on the contrast

β/α such that

‖u|n − ūms
k |n‖ . ‖u0 − Pms

k ◦ u0‖+ kd/2µk + kdµ2kH−1 +H + ∆t.

Hence, the choice k ≈ logH gives

‖u|n − ūms
k |n‖ . ‖u0 − Pms

k ◦ u0‖+H + ∆t.

Proof. Use the triangle inequality, Theorem 4.2.3, Theorem 5.1.2 and Theorem 5.2.1.

5.3.2 Matrix assembly

By doing the same kind of computation as in 4.2.5, we obtain

Problem 5.3.2. Knowing Ūms
k |n, find Ūms

k |n+1 such that{
Mms
k Ūms

k |n+1 = (Mms
k −∆tSms

k)Ūms
k |n + ∆tFk|n,

Ūms
k |0 =

(
(Pms

k ◦ u0)|0, . . . , (Pms
k ◦ u0)|N

)T
.

(5.8)

where

• Mms
k = [mij](i,j)∈N 2

H
, mij =

∫
Ω Λk,iΛk,j dx, is the multi-scale mass matrix,

54

CHAPTER 5. THE LOCALIZED ORTHOGONAL DECOMPOSITION

• Sms
k = [aij](i,j)∈N 2

H
, aij =

∫
Ω(A∇Λk,i) · ∇Λk,j dx, is the multi-scale stiffness matrix,

• Ūms
k |n = (ūms|nk,0, . . . , ūms|nk,N)T , where N = |NH |,

• Fk|n = [Fi]i∈NH , Fi =
∫

Ω f |
nΛk,i dx.

5.3.3 Stability and the Courant–Friedrichs–Lewy condition

Like for the finite element case, using the forward Euler method implies a conditional stability.
In this section, we formulate this condition, which is in fact, closed to the one for the finite
element method.

Theorem 5.3.2 (Stability). If we suppose

1− CinvβH
−2 ∆t

2
≥ 0 (5.9)

then the scheme (5.7) is stable i.e. if ūms
k is the solution of (5.7), then for any n we have

‖ūms
k |n+1‖ ≤ ‖Pms

k ◦ u0‖+ 2∆t
n∑
j=0

‖f |j‖.

Proof. Similar to the proof for the finite element case, Theorem 4.2.2.

We see once again that this condition is very restrictive on ∆t. As for the finite element
case, this condition is even worst for large β. However, the fine mesh have no influence on this
condition. Only the coarse mesh is important here. Since h � H, we can conclude that the
complete method using the localized orthogonal decomposition coupled with the forward Euler
method is better than the complete method using the finite element method.

5.3.4 Implementation in Python

See Appendix B and Appendix D.1.

5.3.5 Numerical results

Error

We check the order of the convergence rate in space of the (localized) orthogonal decomposition
method. We take the diffusion coefficient A(x) = (2 + cos(2π

ε x))−1, for 0 < ε ≤ 1. Moreover, we
have u0 = 0 and f = 1. On Figure 5.6 we draw the relative L2-error ‖u− ums‖/‖u‖ depending
on the coarse mesh size H in orange and the relative L2-error ‖u− ums

k ‖/‖u‖, k = 0, depending
on the coarse mesh size H in blue. We fix ∆t in such way that the condition (5.9) is satisfied
for every H.

55

CHAPTER 5. THE LOCALIZED ORTHOGONAL DECOMPOSITION

(a) ε = 20. (b) ε = 2−1. (c) ε = 2−2.

(d) ε = 2−3. (e) ε = 2−4. (f) ε = 2−5.

Figure 5.6: L2-error with respect to the coarse mesh size H

5.4 Super-time Stepping approximation

Here, we apply the Super-time Stepping acceleration to the localized orthogonal decomposition
method.

5.4.1 Formulation

With the same reasoning used in the finite element method case, we get the following formulation

Problem 5.4.1. Knowing ūms
k |n, find ūms

k |n+1 ∈ V ms
k such that

(
ūms
k |n+1/N , vms

k

)
=
(
ūms
k |n, vms

k

)
+τ1

(
(f |n, vms

k)− a(ūms
k |n, vms

k)
)
, ∀vms

k ∈ V ms
k ,(

ūms
k |n+2/N , vms

k

)
=
(
ūms
k |n+1/N , vms

k

)
+τ2

(
(f |n, vms

k)− a(ūms
k |n+1/N , vms

k)
)
, ∀vms

k ∈ V ms
k ,

...(
ūms
k |n+1, vms

k

)
=
(
ūms
k |n+(N−1)/N , vms

k

)
+τN

(
(f |n, vms

k)− a(ūms
k |n+(N−1)/N , vms

k)
)
, ∀vms

k ∈ V ms
k .

(5.10)

and such that ūms
k |0 = Pms

k ◦ u0

5.4.2 Stability

Same as for the finite element method case.

5.4.3 Error of the full method

We saw in Theorem 4.3.1 that the order of convergence is 1 with respect to ∆T . It leads to the
following error of the completely discretized method.

56

CHAPTER 5. THE LOCALIZED ORTHOGONAL DECOMPOSITION

Theorem 5.4.1 (Error of the full method). Let u be the solution of (2.2) and ūms
k be the

solution of (5.10). Then

‖u|n − ūms
k |n‖ . ‖u0 − Pms

k ◦ u0‖+ kd/2µk + kdµ2kH−1 +H + ∆T.

Hence, the choice k ≈ logH gives

‖u|n − ūms
k |n‖ . ‖u0 − Pms

k ◦ u0‖+H + ∆T.

Proof. Use the triangle inequality, theorem 4.3.1 and 4.1.3.

5.4.4 Implementation in Python

See appendix B and appendix D.2.

5.4.5 Numerical results

Lastly, we compare the speed of all the different methods we used so far.

Balance the error convergence rate

The aim of this section is to try to have a convergence rate of the error due to the completly
discretized methods of order one with respect to the mesh size (h for the finite element method
and H for the localized orthogonal decomposition). First, let us remind the reader that the
convergence rate of the error due to the finite element/Euler method is O(h + ∆t) and that
the convergence rate of the error due to the localized orthogonal decomposition/Euler method
is O(H + ∆t). Hence, we would like that ∆t ≤ Ch (resp. ∆t ≤ CH) with C independent of
h (resp. H). However, since the Courant–Friedrichs–Lewy condition have to be statisfied and
since the mesh size is lower than 1, the condition ∆t ≤ Ch (resp. ∆t ≤ CH) is impossible.

However, by using the Super-time Stepping instead of the forward Euler method, balancing
the convergence rate due to the approximation must be possible. For instance, for the localized
orthogonal decomposition we have (see [1])

∆T = ∆texpl
N

2
√
ν

(
(1 +

√
ν)2N − (1−

√
ν)2N

(1 +
√
ν)2N + (1−

√
ν)2N

)
, where ∆texpl := 2C−1

invβ
−1H.

We did some experiments to know how to balance the error convergence rate. On Figure
5.7, we drew the Super-time step ∆T with respect to the mesh size H.

(a) (b) (c)

Figure 5.7: Balance the error convergence rate.

57

CHAPTER 5. THE LOCALIZED ORTHOGONAL DECOMPOSITION

On Figure 5.7 (a), we fixed ν = 0.1 and N = Ha with a ∈ {−1/2,−1,−3/2}. We see that the
orange curve (N = H−1) follows the H one. It indicates us that we may have ∆T (N, ν) ≤ CH
if N = C ′H−1.

On Figure (b), we fixed ν = 0.1 and N = CH, for diffents C. It seems that the blue curve
(C = 0.01) follows the H2 curve while the others follows the H one. Manifestaly, in order to
have ∆T ≤ CH, we must have N ≥ C ′H−1.

Finally, on Figure (c), we fixed N = H−1 ≥ C ′H−1 and we plot ∆T for different ν. Seem-
ingly, for all ν, we have ∆T ≤ CH. However, the constant C must depend on ν.

To conclude, these experiments gives us the following hints : If we have N ≥ C ′H−1, then
∆T ≤ C(ν)H.

Speed comparison

The result of the speed tests is recapitulated in Table 5.1.

Matrix
NFine NCoarse ∆texpl N ν T assembly Simulation Relative

(ns) (ms) time (ms) time (ms) L2-Error

FEM/Euler

100 - 8900.0 - - 1.0 5.2 256.6 1.600e-10
200 - 2225.0 - - 1.0 5.6 1054.2 1.447e-11
500 - 356.0 - - 1.0 6.4 7083.7 1.050e-12
1000 - 89.0 - - 1.0 7.7 31961.3 9.709e-14
1500 - 39.6 - - 1.0 7.6 87790.5 1.050e-14

FEM/STS

2000 - 22.3 1 1.00 1.0 10.6 351614.2 5.099e-16
2000 - 22.3 1 0.10 1.0 11.0 189142.3 2.824e-16
2000 - 22.3 1 0.01 1.0 9.2 171627.6 1.831e-16
2000 - 22.3 2 1.00 1.0 10.5 257827.8 1.308e-18
2000 - 22.3 2 0.10 1.0 10.2 94199.1 1.517e-15
2000 - 22.3 2 0.01 1.0 9.7 67850.6 4.359e-15
2000 - 22.3 5 1.00 1.0 9.8 207419.3 1.756e-15
2000 - 22.3 5 0.10 1.0 9.4 65897.5 3.185e-14
2000 - 22.3 5 0.01 1.0 10.3 27169.5 1.900e-13
2000 - 22.3 10 1.00 1.0 10.5 190784.6 2.231e-14
2000 - 22.3 10 0.10 1.0 10.7 60923.9 2.227e-13
2000 - 22.3 10 0.01 1.0 10.1 19859.8 3.958e-12
2000 - 22.3 20 1.00 1.0 10.5 184691.3 6.596e-14
2000 - 22.3 20 0.10 1.0 10.0 59115.9 6.525e-13
2000 - 22.3 20 0.01 1.0 10.5 18658.6 1.350e-11

LOD/Euler

2000 50 35600.0 - - 1.0 1627.2 59.4 1.478e-09
2000 100 8900.0 - - 1.0 3141.5 239.9 1.381e-10
2000 200 2225.0 - - 1.0 6214.9 1003.9 9.331e-12
2000 500 356.0 - - 1.0 15492.2 6898.8 4.134e-13
2000 1000 89.0 - - 1.0 31750.2 31696.4 1.650e-14

58

CHAPTER 5. THE LOCALIZED ORTHOGONAL DECOMPOSITION

Matrix
NFine NCoarse ∆texpl N ν T assembly Simulation Relative

(ns) (ms) time (ms) time (ms) L2-Error

LOD/STS

2000 50 35600.0 1 1.00 1.0 1631.3 120.1 4.916e-10
2000 50 35600.0 1 0.10 1.0 1602.5 65.1 3.605e-09
2000 50 35600.0 1 0.01 1.0 1600.4 60.8 2.253e-09
2000 50 35600.0 2 1.00 1.0 1603.6 75.5 1.492e-09
2000 50 35600.0 2 0.10 1.0 1601.6 26.9 1.448e-08
2000 50 35600.0 2 0.01 1.0 1603.1 18.9 3.227e-08
2000 50 35600.0 5 1.00 1.0 1601.8 46.5 1.143e-08
2000 50 35600.0 5 0.10 1.0 1614.7 8.9 1.810e-07
2000 50 35600.0 5 0.01 1.0 1594.0 0.1 9.559e-07
2000 50 35600.0 10 1.00 1.0 1589.6 30.1 7.801e-08
2000 50 35600.0 10 0.10 1.0 1596.6 0.1 9.559e-07
2000 50 35600.0 10 0.01 1.0 1593.3 0.1 9.559e-07
2000 50 35600.0 20 1.00 1.0 1592.3 14.0 3.927e-07
2000 50 35600.0 20 0.10 1.0 1595.1 0.1 9.559e-07
2000 50 35600.0 20 0.01 1.0 1593.1 0.1 9.559e-07
2000 100 8900.0 1 1.00 1.0 3131.6 487.8 5.747e-11
2000 100 8900.0 1 0.10 1.0 3137.9 267.6 1.570e-10
2000 100 8900.0 1 0.01 1.0 3132.4 246.6 1.606e-10
2000 100 8900.0 2 1.00 1.0 3338.8 321.2 1.390e-10
2000 100 8900.0 2 0.10 1.0 3437.5 113.2 6.797e-10
2000 100 8900.0 2 0.01 1.0 3187.4 78.8 2.344e-09
2000 100 8900.0 5 1.00 1.0 3230.1 198.6 1.746e-09
2000 100 8900.0 5 0.10 1.0 3205.7 59.5 7.191e-09
2000 100 8900.0 5 0.01 1.0 3179.3 18.9 9.627e-08
2000 100 8900.0 10 1.00 1.0 3227.6 158.5 4.005e-09
2000 100 8900.0 10 0.10 1.0 3394.2 45.1 2.262e-08
2000 100 8900.0 10 0.01 1.0 3263.4 7.6 3.066e-07
2000 100 8900.0 20 1.00 1.0 3181.2 132.8 1.131e-08
2000 100 8900.0 20 0.10 1.0 3177.8 27.4 1.798e-07
2000 100 8900.0 20 0.01 1.0 3155.2 0.1 9.559e-07
2000 200 2225.0 1 1.00 1.0 6246.7 2050.7 4.000e-12
2000 200 2225.0 1 0.10 1.0 6250.7 1129.0 7.116e-12
2000 200 2225.0 1 0.01 1.0 6250.2 1033.6 1.657e-11
2000 200 2225.0 2 1.00 1.0 6249.3 1317.3 9.388e-12
2000 200 2225.0 2 0.10 1.0 6247.1 477.1 7.175e-11
2000 200 2225.0 2 0.01 1.0 6222.8 341.1 2.479e-10
2000 200 2225.0 5 1.00 1.0 6225.1 863.3 9.023e-11
2000 200 2225.0 5 0.10 1.0 6242.2 272.8 2.916e-10
2000 200 2225.0 5 0.01 1.0 6228.6 106.4 4.070e-09
2000 200 2225.0 10 1.00 1.0 6280.7 705.7 4.099e-10
2000 200 2225.0 10 0.10 1.0 6288.2 218.1 2.339e-09
2000 200 2225.0 10 0.01 1.0 6295.7 64.8 1.864e-08
2000 200 2225.0 20 1.00 1.0 6251.4 624.5 1.743e-09

59

CHAPTER 5. THE LOCALIZED ORTHOGONAL DECOMPOSITION

Matrix
NFine NCoarse ∆texpl N ν T assembly Simulation Relative

(ns) (ms) time (ms) time (ms) L2-Error

2000 200 2225.0 20 0.10 1.0 6250.0 187.4 6.788e-09
2000 200 2225.0 20 0.01 1.0 6247.8 43.2 1.039e-07
2000 500 356.0 1 1.00 1.0 15493.3 14123.1 9.035e-14
2000 500 356.0 1 0.10 1.0 15478.4 7769.2 3.008e-13
2000 500 356.0 1 0.01 1.0 15517.4 7136.7 1.063e-13
2000 500 356.0 2 1.00 1.0 15490.5 9375.9 4.140e-13
2000 500 356.0 2 0.10 1.0 15501.1 3414.0 2.818e-12
2000 500 356.0 2 0.01 1.0 15609.3 2455.7 1.873e-12
2000 500 356.0 5 1.00 1.0 15560.3 6472.1 1.771e-12
2000 500 356.0 5 0.10 1.0 15591.6 2055.5 1.267e-11
2000 500 356.0 5 0.01 1.0 15605.4 846.4 6.708e-11
2000 500 356.0 10 1.00 1.0 15530.3 5537.6 9.303e-12
2000 500 356.0 10 0.10 1.0 16525.1 1703.0 8.029e-11
2000 500 356.0 10 0.01 1.0 15605.1 552.6 4.237e-10
2000 500 356.0 20 1.00 1.0 15621.2 4933.6 4.211e-11
2000 500 356.0 20 0.10 1.0 16071.9 1577.4 3.934e-10
2000 500 356.0 20 0.01 1.0 15490.6 491.7 1.442e-09
2000 1000 89.0 1 1.00 1.0 31351.2 66856.5 1.751e-15
2000 1000 89.0 1 0.10 1.0 33068.2 36307.1 6.479e-15
2000 1000 89.0 1 0.01 1.0 30994.4 32798.7 5.063e-15
2000 1000 89.0 2 1.00 1.0 31038.5 45100.5 1.631e-14
2000 1000 89.0 2 0.10 1.0 32467.3 16510.8 7.445e-14
2000 1000 89.0 2 0.01 1.0 30969.4 11788.7 1.536e-13
2000 1000 89.0 5 1.00 1.0 30902.9 32948.9 6.586e-14
2000 1000 89.0 5 0.10 1.0 30934.0 10458.0 7.303e-13
2000 1000 89.0 5 0.01 1.0 31572.8 4440.6 2.751e-12
2000 1000 89.0 10 1.00 1.0 32800.8 29524.4 2.224e-13
2000 1000 89.0 10 0.10 1.0 32532.3 9411.3 4.706e-12
2000 1000 89.0 10 0.01 1.0 31308.9 2988.8 6.717e-11
2000 1000 89.0 20 1.00 1.0 32161.7 27138.6 1.772e-12
2000 1000 89.0 20 0.10 1.0 30953.5 8532.3 1.242e-11
2000 1000 89.0 20 0.01 1.0 31143.7 2669.6 1.501e-10

Table 5.1: Speed comparison between the 4 completely discretized methods.

We achieved the experiment in one dimension. We chose u0 = 0 and f = 1. Also, the diffusion
coefficient A = (2 + cos(2π

ε x)−1. We performed the test for the four completely discretized
methods with the same end time T = 0.001. We compare how fast the methods reach this end
time for different discretization parameters.

The first thing to notice is that the time to build the mass and the stiffness matrices is much
long for the localized orthogonal decomposition method than for the finite element method.
Indeed, for the finite element method, the worst case is for a really fine mesh (here 2000) and
it takes around 10 ms. For the localized orthogonal decomposition method, the best case is

60

CHAPTER 5. THE LOCALIZED ORTHOGONAL DECOMPOSITION

when the coarse mesh size is large (here 50) and it takes approximately 1600 ms. However, the
simulation time is lower for the localized orthogonal decomposition method. Lastly, for both
space discretization methods, it is faster to use the Super-time stepping acceleration rather than
the forward Euler method.

61

Chapter 6

Concluding remarks

To conclude, we summarize the main points discussed in this thesis.

6.1 Recap

The main points discussed in this thesis are the following

• The finite element method applied to a problem including fast varying coefficient is not
efficient. In addition to a convergence rate of order one with respect to the mesh size,
we also have a pre-asymptotic effect where the numeric solution is fully different from the
exact solution.

• In order to avoid the pre-asymptotic effect, we constructed the localized orthogonal de-
composition method. This method have a better convergence rate than the finite element
method one and is less expensive to compute.

• For time discretization we use the forward Euler method. As it is an explicit finite differ-
ences method, it has a stability condition : the time step must be lower than the mesh
size squared. This condition coupled with the pre-asymptotic effect of the finite element
method leads to an unusable completely discretized method. However, coupled with the
localized orthogonal decomposition method, it leads to a practicable method.

• We can improve the forward Euler method with the Super-time stepping acceleration. In
addition we relax the stability condition of the Euler method to ensure the stability over
a super time step.

• For a diffusion coefficient with fast variations, the finite element method mixed with the
forward Euler method is the worst. The localized orthogonal decomposition method with
super-time stepping acceleration is the best option to solve such problems.

63

Bibliography

[1] Vasilios Alexiades, Geneviève Amiez, and Pierre-Alain Gremaud. Super-time-stepping ac-
celeration of explicit schemes for parabolic problems. Communications in Numerical Meth-
ods in Engineering, 12(1):31–42, 1996.

[2] Vassilios A. Dougalis. Finite element methods for the numerical solution of partial differ-
ential equations (lecture notes), 2013.

[3] Lawrence C. Evans. Partial Differential Equations, volume 19. American Mathematical
Society, 2010.

[4] F. Hellman. Gridlod – lod for structured grids, 2017.

[5] Stig Larsson and Vidar Thomee. Partial Differential Equations with Numerical Methods,
volume 45. Springer-Verlag Berlin Heidelberg, 2003.

[6] A. Målqvist and A. Persson. Multiscale techniques for parabolic equations. ArXiv e-prints,
April 2015.

[7] R. Maier and D. Peterseim. Explicit Computational Wave Propagation in Micro-
Heterogeneous Media. ArXiv e-prints, March 2018.

[8] A. Malqvist and D. Peterseim. Localization of Elliptic Multiscale Problems. ArXiv e-prints,
August 2013.

[9] J. T. Oden. An Introduction to the Mathematical Theory of Finite Elements. Dover Publi-
cations, 2011.

[10] Daniel Peterseim. Numerical homogenization of partial differential equations (lecture notes),
February 2018.

65

Appendix A

FEM class

1 import numpy as np
2 import s c ipy . spar s e as spar s e
3 from g r i d l o d import fem , u t i l
4 from u t i l import computeDeltatExpl
5

6 c l a s s DiffusionProblemFEM :
7 de f i n i t (s e l f , NPatch) :
8 s e l f . NPatch = NPatch
9 s e l f . d i f f u s i o n c o e f f = np . ones (np . prod (NPatch))

10 s e l f . f = np . z e ro s (np . prod (NPatch+1))
11

12 de f generateRandCoeff (s e l f , alpha , beta) :
13 s e l f . d i f f u s i o n c o e f f = np . random . rand (np . prod (s e l f .

NPatch)) ∗(beta − alpha) + alpha
14

15 de f generateBinaryCoe f f (s e l f , alpha , beta) :
16 s e l f . d i f f u s i o n c o e f f = beta ∗np . ones (np . prod (s e l f .

NPatch))
17 s e l f . d i f f u s i o n c o e f f [np . arange (np . prod (s e l f . NPatch)

/2)] = alpha
18

19 de f g e n e r a t e P e r i o d i c C o e f f (s e l f , e p s i l o n) :
20 X = np . l i n s p a c e (0 , 1 , s e l f . NPatch)
21 s e l f . d i f f u s i o n c o e f f = 1./(2+np . cos (2∗np . p i ∗X/ e p s i l o n

))
22

23 de f assembleMatr ices (s e l f) :
24 KLocFull = fem . l o c a l S t i f f n e s s M a t r i x (s e l f . NPatch)
25 s e l f . KFull = fem . assemblePatchMatrix (s e l f . NPatch ,

KLocFull , s e l f . d i f f u s i o n c o e f f)
26 MLocFull = fem . localMassMatr ix (s e l f . NPatch)
27 s e l f . MFull = fem . assemblePatchMatrix (s e l f . NPatch ,

MLocFull)
28

67

APPENDIX A. FEM CLASS

29 de f in i tSupe rStep (s e l f , N, nu) :
30 beta = np . max(s e l f . d i f f u s i o n c o e f f)
31 d e l t a t e x p l , t r i a n g l e s i z e = computeDeltatExpl (s e l f .

NPatch , beta)
32

33 s e l f . tau = np . z e ro s (N)
34 f o r i in range (1 , N+1) :
35 s e l f . tau [i −1] = d e l t a t e x p l /((nu−1)∗np . cos (

np . p i ∗(2∗ i −1)/(2∗N)) + 1 + nu)
36

37 re turn d e l t a t e x p l
38

39 de f so lveStep (s e l f , xFu l l p r ev i ous , d e l t a t) :
40 f r e e = u t i l . inter iorpIndexMap (s e l f . NPatch)
41

42 bFul l = d e l t a t ∗ s e l f . MFull∗ s e l f . f + (s e l f . MFull −
d e l t a t ∗ s e l f . KFull) ∗ x F u l l p r e v i o u s

43

44 MFree = s e l f . MFull [f r e e] [: , f r e e]
45 bFree = bFul l [f r e e]
46

47 xFree = spar s e . l i n a l g . sp so l v e (MFree , bFree)
48

49 xFull now = np . z e ro s (np . prod (s e l f . NPatch+1))
50 xFull now [f r e e] = xFree
51 re turn xFull now
52

53 de f so lveSuperStep (s e l f , xFu l l p r ev i ous , N, nu) :
54 f r e e = u t i l . inter iorpIndexMap (s e l f . NPatch)
55 MFree = s e l f . MFull [f r e e] [: , f r e e]
56

57 f o r n in range (0 , N) :
58 bFul l = s e l f . tau [n]∗ s e l f . MFull∗ s e l f . f + (s e l f

. MFull − s e l f . tau [n]∗ s e l f . KFull) ∗
x F u l l p r e v i o u s

59

60 bFree = bFul l [f r e e]
61 xFree now = spar s e . l i n a l g . sp so l v e (MFree ,

bFree)
62

63 xFull now = np . z e ro s (np . prod (s e l f . NPatch+1))
64 xFull now [f r e e] = np . t ranspose (xFree now)
65 x F u l l p r e v i o u s = xFull now
66

67 re turn x F u l l p r e v i o u s

68

Appendix B

LOD class

1 import numpy as np
2 import s c ipy . spar s e as spar s e
3 from g r i d l o d import pg , inte rp , coe f , u t i l , fem , world , l i n a l g ,

femsolver , t r anspor t
4 from g r i d l o d . world import World
5

6 from u t i l import computeDeltatExpl
7

8 c l a s s DiffusionProblemLOD :
9 de f i n i t (s e l f , NFine , NCoarse) :

10 mod = NFine % NCoarse
11 i f (l en (NFine) == 1) :
12 a s s e r t (mod [0] == 0) , ”NCoarse i s not a

re f inement o f NFine”
13 e l i f (l en (NFine) == 2) :
14 a s s e r t (mod [0] == 0 and mod [1] == 0) , ”

NCoarse i s not a re f inement o f NFine”
15 e l s e :
16 a s s e r t (t rue == f a l s e) , ”Dimension not

supported ”
17

18 s e l f . NFine = NFine
19 s e l f . NCoarse = NCoarse
20 s e l f . d i f f u s i o n c o e f f = np . ones (np . prod (NFine))
21 s e l f . f = np . z e ro s (np . prod (NCoarse+1))
22 NCoarseElement = s e l f . NFine/ s e l f . NCoarse
23

24 i f (l en (NFine) == 1) :
25 s e l f . boundaryConditions = np . array ([[0 , 0]])
26 e l i f (l en (NFine) == 2) :
27 s e l f . boundaryConditions = np . array ([[0 , 0] ,

[0 , 0]])
28 s e l f .P = i n t e r p . L2Project ionPatchMatr ix (np .

array ([0 , 0]) , s e l f . NCoarse , s e l f . NCoarse ,

69

APPENDIX B. LOD CLASS

NCoarseElement , s e l f . boundaryConditions)
29

30 de f generateRandCoeff (s e l f , alpha , beta) :
31 s e l f . d i f f u s i o n c o e f f = np . random . rand (np . prod (s e l f .

NFine)) ∗(beta − alpha) + alpha
32

33 de f generateBinaryCoe f f (s e l f , alpha , beta) :
34 s e l f . d i f f u s i o n c o e f f = beta ∗np . ones (np . prod (s e l f .

NFine))
35 s e l f . d i f f u s i o n c o e f f [np . arange (np . prod (s e l f . NFine)

/2)] = alpha
36

37 de f g e n e r a t e P e r i o d i c C o e f f (s e l f , e p s i l o n) :
38 X = np . l i n s p a c e (0 , 1 , s e l f . NFine)
39 s e l f . d i f f u s i o n c o e f f = 1./(2+np . cos (2∗np . p i ∗X/ e p s i l o n

))
40

41 de f in i tSupe rStep (s e l f , N, nu) :
42 beta = np . max(s e l f . d i f f u s i o n c o e f f)
43 d e l t a t e x p l , t r i a n g l e s i z e = computeDeltatExpl (s e l f .

NCoarse , beta)
44

45 s e l f . tau = np . z e ro s (N)
46 f o r i in range (1 , N+1) :
47 s e l f . tau [i −1] = d e l t a t e x p l /((nu−1)∗np . cos (

np . p i ∗(2∗ i −1)/(2∗N)) + 1 + nu)
48

49 re turn d e l t a t e x p l , t r i a n g l e s i z e
50

51 de f assembleMatr ices (s e l f , k=2) :
52 NCoarseElement = s e l f . NFine/ s e l f . NCoarse
53 world = World (s e l f . NCoarse , NCoarseElement , s e l f .

boundaryConditions)
54

55 rCoarse = np . ones (np . prod (s e l f . NCoarse))
56 aCoef = c o e f . c o e f f i c i e n t C o a r s e F a c t o r (s e l f . NCoarse ,

NCoarseElement , s e l f . d i f f u s i o n c o e f f , rCoarse)
57

58 IPatchGenerator = lambda i , N: i n t e r p .
L2Project ionPatchMatr ix (i , N, s e l f . NCoarse ,
NCoarseElement , s e l f . boundaryConditions)

59 pglod = pg . PetrovGalerkinLOD (world , k ,
IPatchGenerator , 0)

60 pglod . updateCorrectors (aCoef , c l e a r F i n e Q u a n t i t i e s=
False)

61

62 s e l f . KFull = pglod . as sembleMsSt i f fnes sMatr ix () #

70

APPENDIX B. LOD CLASS

S t r i f f n e s s Matrix
63 s e l f . MFull = fem . assemblePatchMatrix (s e l f . NCoarse ,

world . MLocCoarse) # Mass Matrix
64

65 b a s i s = fem . assemblePro longat ionMatr ix (s e l f . NCoarse ,
NCoarseElement) # VH b a s i s

66 b a s i s C o r r e c t o r s = pglod . a s s embleBas i sCor rec to r s () #
WH b a s i s

67 modi f i edBas i s = b a s i s − b a s i s C o r r e c t o r s # ˜VH b a s i s
68

69 re turn modi f i edBas i s , b a s i s
70

71 de f so lveStep (s e l f , xFu l l p r ev i ous , d e l t a t) :
72 NCoarseElement = s e l f . NFine/ s e l f . NCoarse
73 f r e e = u t i l . inter iorpIndexMap (s e l f . NCoarse)
74

75 bFul l = d e l t a t ∗ s e l f . MFull∗ s e l f . f + (s e l f . MFull −
d e l t a t ∗ s e l f . KFull) ∗ x F u l l p r e v i o u s

76

77 MFree = s e l f . MFull [f r e e] [: , f r e e]
78 bFree = bFul l [f r e e]
79

80 xFree = spar s e . l i n a l g . sp so l v e (MFree , bFree)
81

82 xFull now = np . z e ro s (np . prod (s e l f . NCoarse+1))
83 xFull now [f r e e] = xFree
84 re turn xFull now
85

86 de f so lveSuperStep (s e l f , xFu l l p r ev i ous , N, nu) :
87 beta = np . max(s e l f . d i f f u s i o n c o e f f)
88 d e l t a t e x p l = computeDeltatExpl (s e l f . NCoarse , beta)
89

90 f r e e = u t i l . inter iorpIndexMap (s e l f . NCoarse)
91 MFree = s e l f . MFull [f r e e] [: , f r e e]
92

93 f o r n in range (0 , N) :
94 bFul l = s e l f . tau [n]∗ s e l f . MFull∗ s e l f . f + (s e l f

. MFull − s e l f . tau [n]∗ s e l f . KFull) ∗
x F u l l p r e v i o u s

95

96 bFree = bFul l [f r e e]
97 xFree now = spar s e . l i n a l g . sp so l v e (MFree ,

bFree)
98

99 xFull now = np . z e ro s (np . prod (s e l f . NCoarse+1))
100 xFull now [f r e e] = np . t ranspose (xFree now)
101 x F u l l p r e v i o u s = xFull now

71

APPENDIX B. LOD CLASS

102

103 re turn x F u l l p r e v i o u s

72

Appendix C

FEM implementation

C.1 Forward Euler method

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3 from u t i l import computeDeltatExpl
4

5 from DiffusionProblemFEM import DiffusionProblemFEM
6

7 # Mesh
8 NFine = np . array ([2 0 , 2 0])
9 # f o r c i n g term

10 de f f (t) :
11 r e s = np . z e r o s (np . prod (NFine+1))
12 i f t <= 0 . 0 0 2 :
13 r e s = np . ones (np . prod (NFine+1))
14 re turn r e s ;
15 # i n i t i a l c ond i t i on
16 u 0 = lambda X: np . z e r o s (np . prod (X+1))
17

18 # problem s e t t i n g
19 alpha = 0.01
20 beta = 200 .
21

22 d e l t a t e x p l , t r i a n g l e s i z e = computeDeltatExpl (NFine , beta)
23 d e l t a t = d e l t a t e x p l
24 t max = 1 .
25

26 problemFEM = DiffusionProblemFEM (NFine)
27 problemFEM . generateRandCoeff (alpha , beta)
28 problemFEM . assembleMatr ices ()
29 problemFEM . f = f (0)
30

31 # I n i t i a l i z e the s imu la t i on
32 xFullFEM = u 0 (NFine)

73

APPENDIX C. FEM IMPLEMENTATION

33 # Simulat ion ’ s loop
34 nb loop = i n t (t max / d e l t a t)
35 f o r n in range (1 , nb loop) :
36 t=n∗ d e l t a t
37 problemFEM . f = f (t)
38 xFullFEM = problemFEM . so lveStep (xFullFEM , d e l t a t)
39

40 # plo t s o l u t i o n
41 p l t . f i g u r e (0)
42 p l t . c l f ()
43 p l t . imshow (xFullFEM . reshape (NFine+1))
44 p l t . t i t l e (” s o l u t i o n at t=” + s t r (t ∗10∗∗6) + ”us”)
45 p l t . c o l o rba r ()
46 p l t . draw ()
47 p l t . pause (0 . 0 0 1)

C.2 Super-time Stepping acceleration

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3 from u t i l import computeDeltatExpl
4

5 from DiffusionProblemFEM import DiffusionProblemFEM
6

7 # Mesh
8 NFine = np . array ([1 0 0 , 1 00])
9 N = 10

10 nu = 0 .1
11 # f o r c i n g term
12 de f f (t) :
13 r e s = np . z e r o s (np . prod (NFine+1))
14 i f t <= 0 . 0 0 2 :
15 r e s = np . ones (np . prod (NFine+1))
16 re turn r e s ;
17 # i n i t i a l c ond i t i on
18 u 0 = lambda X: np . z e r o s (np . prod (X+1))
19

20 # problem s e t t i n g
21 alpha = 0.01
22 beta = 200 .
23

24 t max = 1 .
25

26 problemFEM = DiffusionProblemFEM (NFine)
27 problemFEM . generateRandCoeff (alpha , beta)
28 problemFEM . assembleMatr ices ()
29 problemFEM . f = f (0)

74

APPENDIX C. FEM IMPLEMENTATION

30

31 problemFEM . in i tSuperStep (N, nu)
32 de l ta T = np . sum(problemFEM . tau)
33

34 # I n i t i a l i z e the s imu la t i on
35 xFullFEM = u 0 (NFine)
36 # Simulat ion ’ s loop
37 nb loop = i n t (t max / de l ta T)
38 f o r n in range (1 , nb loop) :
39 t=n∗ de l ta T
40 problemFEM . f = f (t)
41 xFullFEM = problemFEM . so lveSuperStep (xFullFEM , N, nu)
42

43 # plo t s o l u t i o n
44 p l t . f i g u r e (0)
45 p l t . c l f ()
46 p l t . imshow (xFullFEM . reshape (NFine+1))
47 p l t . t i t l e (” s o l u t i o n at t=” + s t r (t ∗10∗∗6) + ”us”)
48 p l t . c o l o rba r ()
49 p l t . draw ()
50 p l t . pause (0 . 0 0 1)

75

Appendix D

LOD implementation

D.1 Forward Euler method

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3

4 from DiffusionProblemLOD import DiffusionProblemLOD
5 from u t i l import norm , computeDeltatExpl
6

7 # Mesh
8 NFine = np . array ([1 2 , 1 2])
9 NCoarse = np . array ([3 , 3])

10 # f o r c i n g term
11 de f f (t) :
12 r e s = np . z e r o s (np . prod (NCoarse+1))
13 i f t <= 0 . 0 0 2 :
14 r e s = np . ones (np . prod (NCoarse+1))
15 re turn r e s ;
16 # i n i t i a l c ond i t i on
17 u 0 = lambda X: np . z e r o s (np . prod (X+1))
18

19 # problem s e t t i n g
20 alpha = 0.01
21 beta = 200 .
22

23 d e l t a t e x p l , t r i a n g l e s i z e = computeDeltatExpl (NFine , beta)
24 d e l t a t = d e l t a t e x p l
25 t max = 1 .
26

27 problemLOD = DiffusionProblemLOD (NFine , NCoarse)
28 problemLOD . generateRandCoeff (alpha , beta)
29 l o d b a s i s , f em bas i s = problemLOD . assembleMatr ices ()
30 problemLOD . f = f (0)
31

32 # I n i t i a l i z e the s imu la t i on

77

APPENDIX D. LOD IMPLEMENTATION

33 xFullLOD = u 0 (NCoarse)
34 # Simulat ion ’ s loop
35 nb loop = i n t (t max / d e l t a t)
36 f o r n in range (1 , nb loop) :
37 t=n∗ d e l t a t
38 problemLOD . f = f (t)
39 xFullLOD = problemLOD . so lveStep (xFullLOD , d e l t a t)
40

41 # plo t s o l u t i o n
42 p l t . f i g u r e (0)
43 p l t . c l f ()
44 p l t . imshow ((l o d b a s i s ∗xFullLOD) . reshape (NFine+1))
45 p l t . t i t l e (” s o l u t i o n at t=” + s t r (t ∗10∗∗6) + ”us”)
46 p l t . c o l o rba r ()
47 p l t . draw ()
48 p l t . pause (0 . 0 0 1)

D.2 Super-time Stepping acceleration

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3

4 from DiffusionProblemLOD import DiffusionProblemLOD
5 from u t i l import norm
6

7 # Mesh
8 NFine = np . array ([1 2 , 1 2])
9 NCoarse = np . array ([3 , 3])

10 N = 10
11 nu = 0 .1
12 # f o r c i n g term
13 de f f (t) :
14 r e s = np . z e r o s (np . prod (NCoarse+1))
15 i f t <= 0 . 0 0 2 :
16 r e s = np . ones (np . prod (NCoarse+1))
17 re turn r e s ;
18 # i n i t i a l c ond i t i on
19 u 0 = lambda X: np . z e r o s (np . prod (X+1))
20

21 # problem s e t t i n g
22 alpha = 0.01
23 beta = 200 .
24

25 t max = 1 .
26

27 problemLOD = DiffusionProblemLOD (NFine , NCoarse)
28 problemLOD . generateRandCoeff (alpha , beta)

78

APPENDIX D. LOD IMPLEMENTATION

29 l o d b a s i s , f em bas i s = problemLOD . assembleMatr ices ()
30 problemLOD . f = f (0)
31

32 problemLOD . in i tSuperStep (N, nu)
33 de l ta T = np . sum(problemLOD . tau)
34

35 # I n i t i a l i z e the s imu la t i on
36 xFullLOD = u 0 (NCoarse)
37 # Simulat ion ’ s loop
38 nb loop = i n t (t max / de l ta T)
39 f o r n in range (1 , nb loop) :
40 t=n∗ de l ta T
41 problemLOD . f = f (t)
42 xFullLOD = problemLOD . so lveSuperStep (xFullLOD , N, nu)
43

44 # plo t s o l u t i o n
45 p l t . f i g u r e (0)
46 p l t . c l f ()
47 p l t . imshow ((l o d b a s i s ∗xFullLOD) . reshape (NFine+1))
48 p l t . t i t l e (” s o l u t i o n at t=” + s t r (t ∗10∗∗6) + ”us”)
49 p l t . c o l o rba r ()
50 p l t . draw ()
51 p l t . pause (0 . 0 0 1)

79

